
i-Ai32 47, RESEARCH ON DISTRIBUTED ARTIFICIAL INTELLIGENCE(U) SRI i/
INTERNATIONAL MENLO PARK CA S J ROSENSCHEIN AUG 82
N00014-80-C-0296

UNCLASSIFIED F/G 6/4 N

EomhomhohhEsiE

.2~~1 12.~b li 2 -*.. 2

mmii.

LLk

111& L6 1 0 12.0

11111- 1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.- - .o o - - • , o - .

RESEARCH ON DISTRIBUTE
ARTIFICIAL INTELLIGENCE

"(-9)

i. Interim Report

August 1982

By: Stanley J. Rosenschein, Senior Computer Scientist

Artificial Intelligence Center
Computer Science and Technology Division

Prepared for:

Department of the Navy
Office of Naval Research
Mathematical and Information Sciences Division

"ril\ 800 North Quincy Street
-=--" JArlington, Virginia 22217

Attention: Mr. Marvin Denicoff, Code 437
Program Director, Information Systems

Contract No. N00014-80-C-0296
SRI Project 1350

Preparation of this paper was supported by the Office of Naval Research under
Contract NOW01 4-80-C-0296

The views and conclusions contained in this document are those of the authors
and should not be interpreted as representative of the official policies, either
expressed or implied, of the Office of Naval Research or the United States Govern-
ment.

",.*) Approved: D T IC
~ Nils J. Nilsson, Director E P 1 5 1983 ,,

Artificial Intelligence Center

David H. Brandin, Vice President and Director)
Computer Science and Technology Division

Approved for p. .U9 1 6i-.J Distributioii U09 12: 00*

_____ UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (won Data Entered)

PAGE READ INSTRUCTIONSREPORT DOCUMENTATION PBEFORE COMPLETING FORMI. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

SRI Project 1350 I rfl13 /7
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Research on Distributed Artificial Intelligence Interim
1 Feb 80 - 30 Jun 82

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(&)

Stanley J. Rosenschein N00014-80-C-0296

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

SRI International RR014-cJ8-QA, 1-AE
Artificial Intelligence Center NR 610-004

Menlo Park.CA 94025
I,. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

August 1982
13. NUMBER OF PAGES

81
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of thie report)

Office of Naval Research (Code 433) UNCLASSIFIED
Information Sciences Division

800 N. Quincy St. IS&. DECLASSIFICATION/ DOWNGRADINGSCHEDULE

Arlington, VA 22217
16. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17. DISTRIBUTION STAIEMENT (of the abstract entered In Block 20, if different fr-- Report)

Distribution is unlimited.

IW. SUPPLEMENTARY NOTES

None

iS. KEY WORDS (Continue on reverseslide It n .ce.enry and Identify by block number)

20. ABSTRACT (Continue on reverse oide if neceseary and Identify by block number)

DD I OAR. 1473 EDITION O I NOV ,SI I OBSOLETE
S N 0102- LF.014. 6601 SECURITY CLASSIICATION OF TIS PAGIE (Wn Date Entered)

sacu"tv CLASSIPICATIoW4 0F THIS PAGIE (Wheo.e aEnem

JS

S/N 0102. LP. 014- 6601

uECURITY CLASSIFICATION OF THIS PAGS(Who. Cola EAtoe)

Contents

1. Introduction 1

1.1 Planning in a World with other Agents 2
1.2 Reasoning about the Knowledge of other Agents 3
1.3 Planning Communication Acts 4
1.4 Future Plans .. 5

2. Plan Synthesis: A Logical Perspective 6

Abstract ... 6
2.1 Introduction 6
2.2 Preliminaries .. 8

2.2.1 Syntax 8
2.2.2 Semantics ... 8
2.2.3 Axiomatics .. 9
2.2.4 A Restricted Clas of Programs 10

2.3 A Planning Method 11
2.3.1 Definitions .. 11
2.3.2 Finding Solutions 12

2.3.2.1 Normal Form for Conditional Plans 12
2.3.2.2 An Algorithm 13
2.3.2.3 Progression and Regression 15

2.3.3 Hierarchical Planning 17
2.4 Discussion .. 18

2.4.1 Modeling Actions: The Legacy of STRIPS Operators 18
2.4.2 Nonlinear Planning: Problems with Partial Orders and Shuffles 19
2.4.3 Hierarchical Planning. Problems with Heuristic Decompositions 20
2.4.4 Some Benefits of Bigression 20

Acknowledgements ... 21

3. A First Order Formalization of Knowledge and Action for a Multiagent Planning
System ... 22

3.1 Introduction 22
3.1.1 Overview and Related Work 24

3.2. Agents' Beliefs and First-Order Theories 26
3.2.1 Metalanguage and Object Language 28
3.2.2 Knowledge and Belief 33
3.2.3 Individuals 34

.-

3.2.4 Knowing Who Someone Is 37
3.2.5 The Object Language as Metalanguage. 41

3.3. The Interaction of Actions and Beliefs. 45
3.3.1 Situations. 46
3.3.2 Observables 48
3.3.3 Events Types. 49

. 7 ~~3.3.4 Reasoning about Situations and Events. 52
3.3.5 Formalizing Agents' Reasoning about Events. 54
3.3.6 An Example of a Test. 56
3.3.7 Plans and Planning 0
3.3.8 Conclusion 63

3.4 Acknowledgmer-s. 4
Appendix A: The Wise Man Puzzle. 65

4. Planning Natural-Language Utterances 68

4.1 Introduction. 68
4.2 Why Plan Utterances? 69
4.3 The KAMP Language Planning System. 70
4.4 Axiomatizing Knowledge about Intensional Concepts. 72
4.5 Axiomatizing Linguistic Actions 73
4.8 Conclusion 78

References78

Accession For

NTI GRA&I

DTIC TAB F
Unannounced El
Justificatia

* . BY
Distribution/-

Availability Codes
Avail and/or

Dist Special

1. Introduction

This document describes research conducted by SRI International on distributed

artificial intelligence (DAI) under ONR Contract N00014-80-C-0296 during the period February

1, 1980 to June 30, 1982. In addition to an overview describing the general goals of the DAI

project and the major subareas covered, this document includes three papers describing several

facets of our research in greater detail.

The ultimate goal of the DAI project is to discover the essential principles upon which

construction of a network of cooperative intelligent computer agents could be based. The

motivations for distributed AI arise from at least three sources. First, many military problems

have an inherently distributed character by virtue of the physical distribution not only of

military units themselves but also of the various sensors that provide information affecting

those units. Second, the changing economies of computer hardware and communications

technology are making distributed systems increasingly cost-effective; since distributed systems

with computationally powerful processors will soon be more commonplace, it is worthwhile

considering how Al could be used to exploit such systems more fully. Third, there is a strong

motivation from within AL. Artificial-intelligence systems that act in an environment must

reason about that environment. Thus, when the environment contains other agents, as most

realistic environments do, the Al system must reason about the state of those agents and how

to affect it. This leads naturally to distributed Al. -

The first years of the DAI project at SRI have been devoted to the basic research issues

connected with knowledge representation and planning in domains containing multiple agents.

Our framework assumes a system containing physical objects and a number of "agents." Each

agent is endowed with sets of beliefs, goals, and intentions (plans) operationalized as expressions

in suitable language(s). These beliefs, goals, and intentions constitute the "cognitive state" of

the agent, and the overall state of the system consists of the physical state of the objects

combined with the cognitive states of the agents. The agents are capable of performing actions

(or "operations"), and the next state of the system depends on the actions performed by the

several agents.

As with traditional robot problem-solving systems, the choice of operators determines

what state transitions can occur. In classical single-agent problem solving, the operators

typically affect only the physical state of the system. In contrast thereto, we are primarily

interested in operators whose effect is to change the cognitive state of other agents, both as

a goal in itself and as a means toward achieving some "physical" goal by enlisting the aid of

- another agent.

From each agent's point of view, the planning problem consists of forming an intention

(plan) over the operators to achieve its goals, given what it believes. The difficulty posed by this

problem in the distributed case stems directly from the complexity of cognitive-state-affecting

operators. We have been looking at various formalisms for describing cognitive state that would

be suitable for practical systems of the type described. In addition, we have been investigating

useful sets of operators for achieving interagent cooperation.

1.1. Planning in a World with Other Agents

Most Al planning research to date has been based on a simple state-transition model

of action in which there is only one agent and whose actions are always determinate. To handle

complex domains realistically, we need to extend the model to allow actions with indeterminate

outcomes (especially when outcomes differ in likelihood), as well as actions by more than one

agent.

There are several ways of adding indeterminacy to the underlying framework. The

situation calculus formulation of planning is able to express indeterminacy up to logical dis-

junction by simply having the axioms that express the effects of an action contain disjunctive

2.

postconditions. Unfortunately, the STRIPS formulation, which suppresses state variables and

expresses the effects of actions as state-description transformations, is incapable of expressing

this indeterminacy. Our work on dynamic-logic-based planning addresses this problem by

combining some of the best features of STRIPS (e.g. the suppression of state variables and the

use of structured search through a space of state descriptions) with the best features of the

situation calculus (e.g., the possibility of disjunctive postconditions). Some results of this work

are presented in Chapter 2.

The inclusion of concurrency in the formal model can be handled with parameteriza-

tion of the state transformations by the actions of several agents instead of only one. If we

are willing to postulate a global state of the system (even though in practice we may have only

incomplete knowledge of this state), we can conceive of the parallel execution of a primitive

operation as being a single complex operation on the global state. Reasoning about sequences

of actions by the various agents then involves reasoning about interleavings of primitive events.

This would be difficult if the only way to perform this reasoning were to enumerate the com-

binatorially large number of execution sequences and examine each in turn. Fortunately, in

typical domains the effects of an action by one agent are ordinarily invariant under most ac-

tions by other agents. This fact can be used to facilitate the reasoning. We have investigated

extensions of the planning framework that include this form of concurrency.

1.2. Reasoning about the Knowledge of Other Agents

Part of the problem of reasoning about the world involves reasoning about other

agents in the world. Part of what we know about other agents has to do with how they act,

especially how they act in light of their knowledge and desires. In brief, it is often useful to

simplify our description of the behavior of agents by attributing to them certain beliefs and

goals which, with the presumption of rationality, predispose them toward certain actions that

would tend to further their goals if the world were in accord with their beliefs. Thus, an Al

3

--*- -•-

system that would use the principle of rationality to predict the actions of other agents would

need to be able to model those agents' beliefs.

One method for modeling the beliefs of other agents involves using modal logic-i.e.,

a logic with special operators such as BELIEVE(p), where p is a sentence, possibly involving the

BELIEVE operator as well. The semantics of this operator is often given in terms of possible

worlds. That is, what we mean when we say that x believes p0" is that "p is true in all worlds

compatible with what x believes." We note that the object of belief is no longer an entity in

the logic. For example, we cannot quantify over beliefs. Another possible limitation of the

modal approach, at least in its usual form, is that it commits the agent to believing all the

consequences of his beliefs. This assumption is often a useful idealization, but is not always

appropriate for modeling resource-bounded processes like Al problem-solving systems.

One alternative to the modal approach is often called the "syntactic" approach. In

this method the object of belief is taken to be roughly a sentence or a formula of some logic.

Many objections have been raised to this approach, chiefly centering around the treatment

of quantification. However, a careful formulation of the logic not only avoids most of these
problems, but seems to have the advantage of being convenient to implement. Some DAI-related

results by Kurt Konolige in this area are reported in Chapter 3.

1.3. Planning Communication Acts

One view of communication is that it involves sending messages that are "dumps" of

part of the sender's mental state. In other words, the message "encodes" some of the beliefs of

the speaker, and all the hearer has to do is "decode" the message, adding the beliefs to his own

belief set. A more sophisticated view holds that messages are carefully built with the intent to

affect the state of the hearer in ways far more subtle than simply adding a belief to the hearer's

set of beliefs. For instance, in an indirect communication act, the utterance "it is cold in this

room" could be recognized as a request to turn up the heat.

4

-.71.7rr 1-7 -W. 77 .7 7 -J-
To use messages of this complexity, it is necessary for an Al system to contain both a

model of the effects of various communication acts and a procedure for synthesizing utterances

that achieve desired effects. During the past two years Doug Appelt has investigated this

question. The result described in his recent Ph.D. thesis is a system for planning utterances

[App82]. A condensed version of these results are presented as Chapter 4.

1.4. Future Plans

During the next year we hope to extend our theoretical understanding of multiagent

planning and develop algorithms for consensus formation and plan sharing. We also intend

to implement a planning system that is capable of utilizing other similar agents to achieve

shared goals. Although we expect the principles underlying this planner to be largely domain-

independent we shall select a particular domain for experimentation. We will continue our

attempts to characterize a variety of communication-act types using cognitive-state logics, and,

to the extent possible, we shall integrate the results into the evolving implementation.

:.-"-..;""''''" - - . - - - .-; .:.

- 4.- .. .-

2. Plan Synthesis: A Logical Perspective

This section was written by Stanley Roaensehein.

Abstract

This paper explores some theoretical issues of robot planning from the perspective

of propositional dynamic logic. A generalized notion of "progression" and "regression" of

conditions through actions is developed. This leads to a bidirectional single-level planning

algorithm which is easily extended to hierarchical planning. Multiple pre/post-condition pairs,

complex (conjunctive, disjunctive) goals, goals of maintenance and prevention, and plans with

tests are all handled in a natural way. The logical framework is used to clarify gaps in existing

"no, .. ear" and "hierachical" planning strategies.

2.1. Introduction

Although the connection between the A.I. planning problem and automated program

synthesis is widely acknowledged, relatively little planning research has made explicit use of

concepts from the logic of programs. Such logics, however, offer theoretical insight into arious

issues in A.I. planning, including compound goals and levels of abstraction [Sac75, Sac77,

Tat77,Hay79]. Many of these issues arise in their purest form in domains describable in the

propositional calculus (e.g. simple blocks worlds) as evidenced by the literature on the subject

[Sus75, Sac75, Wa175]. Thus for clarity and continuity, we choose the propositional setting to

.4, develop a unified, abstract treatment of these issues using propositional dynamic logic (PDL)

as our primary logical tool [Pra76, Lit77, Pra78a, Pra78b, Har79J.

PDL is a decidable modal propositional logic for reasoning about binary state-relations

induced by programs. In theory, the existence of such a logic provides an immediate "solution"

to the propositional planning problem: One could systematically substitute all possible plans

into a schema (the specification) which asserts the desired property of the plan. The resulting

expressions could be tested for validity to filter out non-solutions. Unfortunately, this fact is

of little practical consequence, as such a procedure is certain to be grossly inefficient. The

approach developed here imposes additional structure by (1) considering a class of problems

that require, in effect, only non-modal reasoning and (2) using suitable 'progression" and

%regression" operators to structure the search for a solution and allow early pruning of hopeless

paths.

Surprisingly, even our restricted formulation covers a more general class of problems

than are handled by most comparable A.I. planning methods. For instance, we allow goals

to be arbitrary wffs, so disjunctive goals (cited as an unsolved problem by Sacerdoti [Sac77])

require no special treatment at all. The approach provides a theoretical basis for hierarchical

plan generation that ties in directly with current ideas on hierarchical program development

(see section 1.3.3). In addition, the use of program logic provides a formal basis for specifying

and verifying the plan-generating system itself.

Although our work can be generalized along several dimensions (propositional axiom

schemata, plans with loops, quantified pre/post-conditions, etc.), these are beyond the scope of

the current paper, which focuses instead on the essential structure of the approach. At the same

time, it should be noted that the use of axiom schemata seems to be a minimal requirement

for a practical application. This paper should be regarded as a foundational study aimed

at deepening our understanding of planning; a separate paper will describe implementation

considerations [Ros81].

7

2.2. Preliminaries

This section briefly presents the basic concepts of a loop-free fragment of propositional

dynamic logic (PDL). The interested reader is referred to [Pra76, Lit77, Har79] for a more

thorough treatment of dynamic logic in its entirety. Though dynamic logic is ordinarily used

to reason about programs, it is equally appropriate for reasoning about plans (in the A.I. sense);

thus in this paper the terms program and plan are used interchangeably.

2.2.1 Syntax

Let P and A denote two symbol sets: atomic propositions and atomic actions, respec-

tively. Define wffs PPA and programs Ap,A simultaneously (deleting subscripts for con-

venience):

(1) P C P

(2) A CA

(3) If p,qE P, then -p,p V qE P

(4) If p E P and a EA, then <a>p E P

(5) AEA

(6) If p E P and p is nonmodal (see below), then p? E A

(7) Ifa,#EA, thena;#EAandau#GEA

A formula is nonmodal if it contains no subformula of the form <a >p. We abbreviate

-'(-'p V -- q) as p A q, -p V q as p D q, (p D q) A (q D p) as p - q, p V -'p as true, and

p A -' p as false. Parentheses are used when necessary according to the usual conventions.

2.2.2 Semantics

A structure S is a triple (W, r, m) where W is a non-empty set of "worlds," 7: P -

2w , and m: A 2 WxW . That is, r assigns to each atomic proposition p the subset of W where

8

p holds, and m assigns to each atomic action a the binary relation over W representing the

next-state relation for a. Given a structure S, meanings can be assigned to arbitrary programs

and formulae by extending m and ;r:

Meanings of Programs

(1) m(A) = {(8,9)1 E W) (identity relation over W)

(2) m(p?) = ((,R, 0l9 E r(p)} (identity relation restricted to worlds where p holds)

(3) m(a;) = m(a) o m($) (composition of relations)

(4) m(a U $) - m(a) U m(8) (union of relations considered as sets)

Meanings of Formulae

(1) r(-p) W- -r(p)

(2) r(p V q) = (p) U r(q)
(3) (<a>p) s EW1 3t EW.(s,t)E m(a) A t E(p)}

The last equation asserts that <a>p is true in those worlds a from which another

world t is reachable via a's next-state relation such that p holds in t. In general our formulas

will involve the dual of <a>, namely [al. [alp can be read "after a, p." The intent is that p

holds in all worlds accessible via a.

A formula p is ealid in a structure $ - (W, ri, m) (written S -- p) iff xrp) - W; p is

valid (written I- p) iff it is valid in every structure.

2.2.3 Axiomatics

The following system captures the semantics given in the previous section:

Axioms

(1) Axioms of the propositional calculus

(2) (aJ(p D q) D ([alp D [alq)

(3) [Alp m p

(4) [p]q M p D q

(5) [a; 01p -[a] [01p

(8) [a U 0]p M [O]p A 19]p

Rules of Inference

(1) From p, p D q derive q (Modus Ponens)

(2) From p derive [ajp (Necessitation)

If a formula p follows from these axioms under the stated rules of inference, we say it

is provable and write p- P; if p can be proved from a set of assumptions, Q, we write Q -- p.

2.2.4 A Restricted Class of Programs

PDL breaks the ordinary conditional statement into more primitive notions of "test"

(?) and "non-deterministic choice" (U). Though we allow the primitive actions to be non-

deterministic, we shall only be interested in deterministic combining forms. Thus we limit

the use of ? and U to contexts of the form (p?; a) U (-'p?;$) and require (for convenience

only) that p be atomic. This corresponds to the ordinary conditional, so we abbreviate this

program form to p - a, 8 and call the class of programs obeying these syntactic restrictions

C-program. (symbolically Ap.A). The requirement that p be atomic is not restrictive, since

arbitrary boolean combinations of tests can be expressed by appropriate use of (possibly nested)

conditionals. For example, -'p - a, is equivalent to p --* a. (p A q) a, is equivalent

to (p -. (q -- a, 0), 0), and so forth.

An important property of our combining forms is that they preserve termination; if

the primitives always terminate, every C-program over those primitives will always terminate.

(Loops are conspicuously absent.) In PDL, the fact that a program a always terminates is

expressed <a >true.

10

. .

2.3. A Planning Method

Having described a suitable language and logic, we are now in a position to discuss

planning methods. Section 1.3.1 contains the formal definition of a (single-level) "planning

problem" and the corresponding notion of a "solution." This leads directly (section 1.3.2.2)

to a bidirectional (single-level) planning algorithm based on "progressing" and "regressing"

conditions through actions. Section 1.3.3 describes how the hierarchical planning problem can

be regarded as a succession of single-level problems in a way that makes the connection between

the levels logically precise.

2.3.1 Definitions

A planning problem is a triple (V, Q,R(u)) where

V - (P, Ai) is the vocabulary of the problem, consisting of the atomic propositions and the
atomic actions. 1

Q is a finite set of axioms, which we will refer to as domain constraints. Q is
partitioned into two subsets: atatic constraints, which are nonmodal formulae,
and dynamic constrainta, which are always of the form p D [ajq, p and q
being arbitrary nonmodal wffs and a an atomic action. We implicitly assume
an axiom of the form <a>true for every atomic action a; this expresses the
fact that the action a always terminates, though Q may only partially specify
in what state a terminates. We also assume that Q is consistent.

R(u) is a finite set of formulae called the plan constraints. Like the dynamic domain
constraints, each of these is of the form p D [u]q for nonmodal p and q. The
symbol u is a distinguished atomic action not contained in A.

A solution to a planning problem (V, Q, R(u)) is an expression a in the programming

language Av such that for every r(a) (obtained by substituting a for u in R), Q - r(a).

I.e., it is provable from the domain constraints Q that a satisfies all the plan constraints. 2

lFor some applications it is desirable to constrain the programming language to use only a designated subset
of the propositions as tests in conditionals. This requires a straightforward modification of our definition and
will not be pursued here.

2 Equivalently in semantic terms: Structures that satisfy the domain constraints also satisfy the a-instantiated

plan constraints.

11

"..............

(Because of the termination constraints on the atomic actions, a is guaranteed to terminate.

So in the language of program logic, we are talking about "total correctness.")

2.3.2 Finding Solutions

Having defined "solutions," we turn our attention to methods for discovering them.

A natural way of organizing the search for solutions is to follow the syntactic structure of the

programming language.

Recall that a program is either A, an atomic action a, or a composite of the form a;

or t -- a, 8 where a and 8 are programs and t is an atomic proposition. It will simplify the

algorithm to consider only programs in a normal form, which we now define.

2.3.2.1 Normal Form for Conditional Plans

A program is in normal form if it consists of a sequence3 of 0 or more atomic actions

followed optionally by a conditional program both branches of which are in normal form,

followed in turn by 0 or more further atomic actions. More formally, a program is in normal

form if it can be written as A,; ... ;A., n > 0, with at most one A, not atomic, in which case

Ai is of the form t -' B1 , B2 where both Bj are themselves in normal form. 4 The null sequence

is identified with A, and we take A;a = a;A - a.

We have not lost any essential solutions by insisting on this form since every C-

program can be put into normal form by transforming the longest (length > 1) sequence of

3 Since ';" is associative, we write sequences a; b;... ; c without indicating order of association.
4 Warren's method [War76 for introducing conditionals produces plans of an even more restricted form: the

conditional must be the l"t action in the sequence. I.e., a plan, once split, may never rejoin. This is not an
essential limitation, but it introduces a somewhat greater degree of redundancy than our form. We note in
passing that Warren's view of the conditional test as an action, has much in common with PDL's p? action.

12

-4w

steps whose first and last steps are conditionals into a single conditional as follows:

(- A, B); ... ;(t -. C, D) (- (A; ... ;(.C, D)), (B; ... ;(.C, D)))

and applying this transformation recursively to A, B, and the residual ... ;(t - C, D).

2.3.2.2 An Algorithm

Suppose we are looking for a normal-form program a that satisfies one of the dynamic

constraints p D [a]q in R. Consider the following cases corresponding to the possible forms of

a:

(1) a -A. This is a solution if Q -p D q.

(2) a - a;#8 or a = #;a for some atomic action a. In the former case, a is a solution if
Q F- p/a J [01q, where p/a represents the strongest provable post-condition of p and
a. Analogously, in the second case, a is a solution if Q I- p D LVja\q where a\q is the
weakest provable precondition of a and q. We call the former case "progression" and the
latter "regression."

(3) a = t - l,2. In this case, a is a solution if Q p A t D [fl,]q and Q -p A -t
[02]q.

We see that (1) defines success, (2) suggests forward and backward strategies for

sequential steps, and (3) suggests a forward strategy for conditionals.

In addition, we see that there are several obvious ways to limit the search. First, if

p D p/a, the forward search need not consider action a. (A special case of this arises when

p/a - true.) Dually, if a\q D q, the backward search need not consider a. (Here we have a

special case when a\q = false.) These checks eliminate self-loops. We can eliminate cycling

in the search space altogether if we are willing to pay the price of checking whether pi D pla

for any pi in the leading chain of preconditions. Likewise we can check whether a\q D qj for

any qj in the trailing chain of postconditions. Note also that if p D t or p D -, t, the forward

conditional search involving t need not be pursued. p/a can never be fale since this would

13
V,

imply failure of a to terminate, contradicting our assumptions about the domain constraints

Q.

These observations lead immediately to the following non-deterministic algorithm for

computing solutions for the single constraint p D (cklq: (Multiple constraints will be discussed

later.)

Bigression Algorithm

"Bigression" stands for "bidirectional progression and regression." Assume p, q are

not false.

Solve(p, q) =Bigress(p, q, A, A).

Bigreau(pre, post, leader, trailer):
-- IF Q I- pre D poet THEN RETURN (leader; trailer).

CHOOSE:
CHOOSE <a,prc/a> from LiveForward(pre):

RETURN (Bigress(pre/a, post, leader; a, trailer))
CHOOSE <a, a\poat> from LiveBack'ward(poet):

RETURN (Bigress(prc, a\poet, leader, a; trailer))
CHOOSE t from NonTriv(pre):

RETURN (leader; C; trailer)
where C - (t -. Bigress(pre A t, post, A, A), Bigress(pre A

' t post, A, A))

LiveForward(p):
IFS S

where S =(<a,p/a>Ia E A,Q F/~ p D p/a)
THEN RETURN (S)
ELSE FAILO.

LiveBackward(q):
IF S 4'

where S -(<a,a\q>la E A,Q V9 a\q D q)
THEN RETURN (S)

41 ELSE FAILO.

NonTriv(p):

where S - (tit E P, Q 9/ p D t, Q V9 p D t)
LI THEN RETURN (S)

14

ELSE FAIL).

The algorithm as presented finds solutions for a single plan constraint. However the

extension to the general case is straightforward: To insure that all the plan constraints are met,

a "Cartesian product" version of this algorithm must be run. A failure in any of the constraint

components counts as failure and serves to prune that branch.

The bigression algorithm makes use of three additional auxiliary functions: "Q I-",

"/", and "\". "Q I-" is a procedure which takes as input a nonmodal formulae p and decides

whether p is provable from Q. If the static axioms, Q., are rich enough,5 this check can be done

using only nonmodal reasoning, i.e., ordinary propositional decision methods. The functions

"/" (progression) and "\" (regression) are the subject of the next section.

2.3.2.3 Progression and Regression

Ideally, we would like p/a to compute the strongest postcondition of condition p and

action a. Similarly, we would like a\q to compute the weakest precondition [Dij75,Wa175]. In

PDL, the weakest precondition of p and a can be expressed simply as [alp, which is obviously

the weakest formula implying "after a, p". The strongest postcondition can be expressed using

a "converse" operator which we have not described. (See [Lit77].)

However, given the restricted form of our dynamic axioms, there will be no proposi-

tional formula provably equivalent to either of these modal formulae. On the other hand,

we can effectively compute the weakest precondition pre and strongest postcondition poet for

which it is provable from Q that pre implies "after a, q" and p implies "after a, poet." It is

these propositional formulae that we label p/a and a\q.

5 Speciflcally, Q. must generate all the nonmodal formulae generated by all of Q. In certain pathological cases,
such as when Q contains a dynamic axiom of the form p D fallolee, Q would have to be extended to include
extra static axioms, since p D ajIfalse and <a>true together imply -'p - a nonmodal formula derivable
only through modal reasoning.

15

K:. The formula p/a is found by taking the conjunction of the set of formulae each of

F:: .which is a disjunction of a set of q, drawn from the "right hand side" of the dynamic axioms of

Q (pi D [alq,) such that the disjunction of the corresponding pi's is implied by p. Dually, a\q

is found by taking taking the disjunction of the set of formulae each of which is a conjunction

of a set of pi drawn from the "left hand side" of the dynamic axioms of Q (pi D [ajqi) such

that that conjunction of the corresponding qi's implies q.

Consider the following sample axioms:

A D [a](B V C)

(F A E) D [aID

In this case, a\(C V D) - (A A G) V (F A E). The reason for this is that (B V C)

conjoined with -' B implies (C V D), so the conjunction of the corresponding left-hand sides

(A A G) is one disjunct of a\(C V D). Likewise, the formula D alone implies (C V D), making

the corresponding left-hand side (F A E) the second disjunct. These two cases exhaust the

possibilities for getting (C V D).

The reason why the formulas p/a and a\q defined in this way are not exactly equiv-

alent to strongest postcondition and weakest precondition lies in the nature of our atomic

actions. Briefly, in the context of programming languages one typically begins with primitives

whose semantics are fully characterized and focuses on characterizing the derived operations

(sequencing, etc.) [Dij75] For example, the weakest precondition for the assignment primitive

is given by wp("z := E", P(z)) - P(E). This equation asserts that the weakest precondition

for condition P and action "x gets E" is precisely P with E substituted for z.

In our case, however, the primitive actions are specified only by axioms giving one-

way implications. Thus, unless we make assumptions of a "non-monotonic" nature, we would

generally be able to consistently add axioms that "weaken" the precondition or "strengthen"

the posteondition of an action. Since "provably weakest" is unattainable, we make do with

* . . - . . . 1

L

"weakest provable." This does not affect the completeness of the search algorithm, since we

are only looking for programs which provably satisfy the specifications. I
2.3.3 Hierarchical Planning

The key observation in extending the single-level algorithm to multi-level, hierarchical

planning is that an atomic action at level k is a plan to be solved for at level k + 1. This point

of view is possible because of the way the planning problem was formalized. Specifically, an

atomic action is described by a set of dynamic axioms in Q. Likewise, the desired program

is described by a set of dynamic axioms in R. Since the same formal objects, namely sets of

dynamic axioms, are involved in both cases, it is natural to assume as primitive some action

with given properties at level k and then solve for a program having those properties at level

k+ 1.

Formally, a hierarchical planning problem is a tree of single-level problems. If <V -

< P, Ah >, Qh, Rk(uk)> is the problem at non-leaf node k, then node k has one successor for

each a8 i, in Ak, and that successor's problem has the form <Vk+a,Qk+1,Q'(ak,,i)> where Q'

denotes the subset of dynamic axioms of Qt having the form p D [ak,i]q. In other words, the

domain constraints on the primitive "a" at level k become plan requirements at level k + 1. A

- solution is a plan using the vocabulary of the leaf nodes that satisfies the requirements of the

root node. I.e., a is a solution if it solves <V.,Q.,R1(u1)>. The propositional vocabulary

and action vocabulary can change from level to level, provided the domain axioms have enough

inferential structure to make the transfer from level to level meaningful.

Obviously, for any node k, only the successor nodes corresponding to actions actually

used in the solution need be solved. Furthermore, the existence of a solution for each of these

nodes guarantees the existence of an overall solution.

As with other hierarchic planners, the main benefit of levels in our approach is

heuristic: The choice of intermediate vocabularies and domain axioms constitutes a choice

17

. ...

of "planning islands." Any algorithm that tries to solve a problem by solving the nodes in

the hierearchy is, in essence, searching for a plan constrained to go through the svates defined

by the intermediate actions' domain constraints. The main benefit of logic here is to define a

reasonable relation between the levels, namely the relation: "correctly implements."

For a fixed determination of levels and a small number of actions it would be possible

to precompute solutions to the subproblems, in which case after solving the problem at the top

level, the system would act more like a compiler than a problem solver. In dynamic situations

when the lower-level actions (in effect, the "tools" for solving the problem) are changing or

when only a small number of actions are ever actually used, it seems more natural to solve

subproblems as they arise.

2.4. Discussion

2.4.1 Modeling Actions: The Legacy of STRIPS Operators

Much of the research into the control of planning has been carried out in the STRIPS

paradigm. [Fik7l, Nil8O] In this approach, actions are regarded not as mappings from states

to states, but rather as syntactic transformations of state-descriptions to state-descriptions,

where state-descriptions are logical formulae. One consequence is the oft-cited benefit of not

needing to mention the various "frame conditions," i.e. the properties which are invariant

under an action.8 Unfortunately, the need for operators to be sensitive to the syntax of state

descriptions led researchers to consider only very simple state descriptions (e.g. sets of atomic

propositions) and very simple transformations (e.g. add-lists and delete-lists).

6However, these invariants need not be as large an obstacle to practical implementation as is commonly supposed
(aee (Rosil).

18

4 .:. 2" '2;.'2 .. .,.. .? -./ -.'. .' .-" "'-' - ". - . " - -2 -" ' i

As an example of an action that is difficult to specify with a single add-list/delete-list

pair, consider the action toggle described by a pair of dynamic axioms:

On(light) D [tog glc(switch) -, On(light)

-,On(light) D [toggle(switch)]On(light)

Since the post-condition depends conditionally on the pre-condition, it cannot be determined

in isolation whether toggle adds or deletes the wff On(light). The same would hold true for

actions with disjunctive post-conditions.

These possibilities notwithstanding, many planning systems do make the assumption

that the truth of a given atomic proposition in the state resulting from applying a sequence

of operators is a determinate, calculable thing. Techniques which rely crucially on these

assumptions are sometimes difficult to adapt to less constraining assumptions. We give two

illustrations from NOAH. [Sac75]

2.4.2 Nonlinear Planning: Problems with Partial Orders and Shuffles

The basic idea behind nonlinear planning is the following: To solve a conjunctive

goal GI&G2, find a sequence SI - a; b;... ;c which achieves GI and another sequence S2 =

d; e;... ;f which achieves G2. Represent the overall plan as a network of partially ordered

actions with SI and S2 as parallel branches. Now use the "resolve conflicts critic" to detect

interference between the plans and impose additional ordering constraints among the actions

to rule out the interference. The network encodes the subset of possible shuffles of SI with S2

which are believed to achieve the overall goal G1&G2.

For the resolve conflicts critic to filter interference correctly, it must know what is

true at each node of the network. Unfortunately, for nodes that occur after joins, what is true

depends crucially on the ultimate lineprization of the parallel branches. In the general case,

the best that c- n be done is to represent the disjunction of the strongest postconditions of the

" 'iiig

alternative linearizations. 7 This requires considering the alternatives, of which there are M+n

where m and n represent the lengths of the action sequences in the two parallel branches. Since

it is easy to imagine cases where resolve-conflicts criticism would be an expensive operation,

the belief that using a nonlinear strategy is computationally efficient seems to be grounded in

the empirical hypothesis that operators encountered in practice will permit easy detection of

conflicts.

2.4.3 Hierarchical Planning: Problems with Heuristic Decompositions

The justification for partial orderings in NOAH is tied up with a desire not to

prematurely commit the system to a particular linear order of actions which, though seemingly

correct at one level, may expand into incorrect plans at lower levels. This possibility can only

arise, of course, if the relation between levels ("plan A achieves the same effect as action a") is

not exact. However, such inexactness undermines the original rationale for hierarchic planning,

namely factorization of complexity, since it destroys compositionality and requires that we

check complex lower-level plans for "unexpected" global interactions. Again, an empirical

hypothesis is presumably invoked, namely that by some suitable metric, the plan comes "close"

to implementing the abstract action. (It is not immediately obvious, though, what metric could

be meaningful for the space in question.)

2.4.4 Some Benefits of Bigression

Some of the benefits of regression were first discussed by Waldinger (Wa75 and

appreciated by Warren [War74]. These benefits are reaped dually by including progression,

which completes the logical symmetry and allows bidirectional search. As we have described

7Actually, NOAH does not represent disjunctive postconditions - which may explain why disjunctive goals are
considered problematical.

20

them, the progression and regression operations handle arbitrary boolean formulas, thus solv-

ing conjunctive and disjunctive goals as special cases of a more general strategy. Goals of

maintenance and prevention can be incorporated into the algorithm as well by expressing as

(nonmodal) wffs the condition to be maintained (m) and the condition to be prevented (v).

Since the planning algorithm actually develops a descriptive wff (d) for each state reachable

during plan execution, it is straightforward to add a check to the procedures LiveForward,

LiveBackward, and NonTriv eliminating paths through states where Q - d > -' m V v.8

This simple approach will work in situations where no dynamic replanning is anticipated;

goals of maintenance and prevention involving execution monitoring, feedback and replanning,

require more complex strategies.

Acknowledgements

I have profited from discussions with Richard Waldinger, Vaughan Pratt, Kurt

Konolige, Dave Wilkins, Jerry Hobbs, and Bob Moore.

8For a more thoroughgoing treatment of reasoning about processes with intermediate states, see [Pra78bj.

21

,I-.-.- - - ; ' i ' _ . , ' " _ " _ - . . , , . - : . '. _

3. A First-Order Formalization of Knowledge
and Action for a Multiagent Planning System

This section was written by Kurt Konolige.

3.1. Introduction

We are interested in constructing a computer agent whose behavior will be intelligent

enough to perform cooperative tasks involving other agents like itself. The construction of

such agents has been a major goal of artificial intelligence research. One of the key tasks

such an agent must perform is to form plans to carry out its intentions in a complex world

in which other planning agents also exist. To construct such agents, it will be necessary to

address a number of issues that concern the interaction of knowledge, actions, and planning.

Briefly stated, an agent at planning time must take into account what his future states of

knowledge will be if he is to form plans that he can execute; and if he must incorporate the

plans of other agents into his own, then he must also be able to reason about the knowledge

and plans of other agents in an appropriate way. These ideas have been explored by several

researchers, especially McCarthy and Hayes [McC69] and Moore [Moo80].

Despite the importance of this problem, there has not been a great deal of work in

the area of formalizing a solution. Formalisms for both action and knowledge separately

have been examined in some depth, but there have been few attempts at a synthesis. The

exception to this is Moore's thesis on reasoning about knowledge and action [MooSOJ, for

which a planner has been recently proposed [App80. Moore shows how a formalism based

on possible-world semantics can be used to reason about the interaction of knowledge and

action. In this paper we develop an alternative formalism for reasoning about knowledge,

belief, and action; we show how this formalism can be used to deal with several well-known

problems, and then describe how it could be used by a plan constructing system.

22

3.1.1 Overview and Related Work

We seek a formalization of knowing and acting such that a description of their interac-

tion satisfies our intuitions. In the first section, we present a basic formalism for describing

an agent's static beliefs about the world. We take a syntactic approach here: an agent's

beliefs are identified with formulas in a first-order language, called the object language

(OL). Propositional attitudes such as knowing and wanting are modeled as a relation be-

tween an agent and a formula in the OL. By introducing a language (the metalanguage,

or ML) whose prime object of study is the OL, we are able to describe an agent's beliefs

as a set of formulas in the OL, and express partial knowledge of that theory. An agent's

reasoning process can be modeled as an inference procedure in the OL: from a base set

of facts and rules about the world, he derives a full set of beliefs, called his theory of the

world.

The syntactic approach to representing propositional attitudes is well-known in the

philosophy literature, and in the artificial intelligence field McCarthy [McC791 has developed

a closely related approach. The formalism developed here differs mainly in that it explicitly

identifies propositional attitudes as relations on sentences in an object language, and uses

provability in the OL as the model of an agent's reasoning process. We are able to present

quite complex deductions involving the beliefs of agents (see the Wise Man Puzzle in

Appendix A, for example) by exploiting the technique of semantic attachment to model

directly an agent's reasoning process. We are indebted to Weyhrauch [Wey80] for an

introduction to this technique, and for the general idea of using ML/OL structures to

represent agents.

Finally, our work differs from McCarthy's in its careful axiomatization of the relation

between ML and OL, and incorporates solutions to several technical problems, including

reasoning about belief-nesting (beliefs about beliefs; Creary [Cre80] has also described a

solution), and a cleaner approach to representing quantified OL expressions in the ML.

23

(This latter subject is not directly relevant to this paper, and will be reported in [Kon81l.)

An alternative to the syntactic approach to representing propositional attitudes is the

possible-world approach, so-called because it utilizes Kripke-type possible-world seman-

tics for a modal logic of knowledge and belief. Moore [Moo80] has shown how to reason

efficiently about propositional attitudes by using a first-order axiomatization of the possible-

world semantics for a modal logic. Our objections to the possible-world approach are

twofold: first, the possible-world semantics for representing propositional attitudes is com-

plex and at times unintuitive; to deduce facts about an agent's knowledge, one must talk

about the possible-worlds that are compatible with what the agent knows. Ultimately, we

suspect that the syntactic approach will prove to be a simpler system in which to perform

automatic deduction, but further research in both areas is needed to decide this issue. A

second objection is that it seems to be difficult to modify possible-world semantics for the

modal logic to model adequately inference processes other than logical deduction. The

possible-world approach uses the modal axiom that every agent knows the consequences

of his knowledge, and this is obviously not true, if only because real agents have resource

limitations on their reasoning processes. The syntactic approach does not suffer from this

criticism, because it is possible to describe explicitly in the ML the inference procedure an

agent might use.

The second part of this paper integrates the syntactic approach to representing knowledge

and belief with a situation calculus [McC89 description of actions. We concentrate on many

of the interactions between knowledge and action presented in Moore's thesis [Moo801.

Simply stated, Moore's account is that an agent's beliefs in any situation arise from at

least three sources: direct observation of the world, persistence of beliefs about previous

situations, and beliefs about what events led to the current situation. By formalizing this

assumption, he shows how to model in an intuitively plausible way the knowledge an agent

needs to perform actions, and the knowledge that he gains in performing them. Although

24

we subscribe to his notions on how knowledge and action should interact, for the reasons

stated above we feel that the possible-world approach Moore uses to formalize these ideas,

while elegant, may not have the same intuitive appeal as the syntactic approach.

The main contribution of this paper is to show that the syntactic approach, when

integrated with a situational calculus description of actions, can adequately formalize

Moore's criteria for the interaction of knowledge and belief. An important benchmark

is to formalize the idea of a test: an agent can perform an action and observe the result to

figure out the state of some unobservable property of the world. We conclude the second

7. section with just such an example.

In the final section we consider the application of these results to a planning system, in

particular one that would require an agent to take account of other agents' plans in forming

his own. We come to the conclusion that such a planning system may not be significantly

different from current situation calculus planners in its method of search, but does require

considerably more sophistication in the deductions it performs at each node in that search.

3.2. Agents' Beliefs and First-Order Theories

In this section we lay the basic groundwork for our syntactic approach to representing

and reasoning about agents' beliefs. We will model an agent's beliefs about the world as

a set of statements (or theory) in some first-order language with equality. This is not to

say that an agent actually represents the world as a set of first-order statements; we are

not concerned here with the details of the internal representation of a computer or human

agent with respect to its environment. All we seek is a way of modelling the beliefs of an

agent in a manner that will make reasonable predictions about the agent's behavior, and

still be formally tractable. To this end we assume that we can represent an agent's beliefs

about the world as a set of statements in a first-order language, and model the derivation

of new beliefs by an agent as an inference process on those statements.

25

Consider an example from the blocks-world domain; let A0 be the name of an agent.

A0 will have some set of beliefs about the state of the blocks-world. We represent Ao's

beliefs as a list of well-formed formulas (wffs) in a first-order language with equality. We

call this list of wffs Ao's theory of the world. For example, suppose A0 believes that block

B is on block C, and that he is holding block D. Then we would have:

Ao's Theory of the Blocks-World

ON(B,C)

HOLDING(Ao, D)

where ON and HOLDING have the appropriate interpretations.

Besides specific facts about the state of the world, Ao also has some general rules about

the way the world is puL -,-gether. For instance, Ao may know the rule that if any block

z is on any block y, then the top of V is not clear. Using this rule together with specific

beliefs about the world, he may be able to deduce that C is not clear. This can be modeled

as a process of extending Ao's initial set of beliefs about the world to include the deduced

information:

Ao's Facts and Rules about the World m Ao's Theory of the World

ON(B,C) ON(B,C)

HOLDING(Ao, D) HOLDING(Ao, D)

Vzy ON(x, y)D-CLEAR(y) Vzy ON(z, y)D-CLEAR(y)

-CLEAR(C)

Thus an agent's theory of the world will be the closure of a set of facts and rules about

the world, under some suitably defined inference procedure. We will call the set of basic

facts and rules from which all other beliefs are derived the base set of the theory. Note that

the inference procedure that derives the consequences of the base set need not be logical

26

deduction; it is readily demonstrated that people do not know all the consequences of their

* beliefs, that they derive contradictory consequences, etc. We recognize that the problem

of deriving the consequences of beliefs for more realistic inference procedures is a thorny

and unsolved one, and do not intend to pursue it here. For the purposes of this paper we

have chosen logical deduction as the inferential procedure: an agent will be able to deduce

the logical consequences of his beliefs.

3.2.1 Metalanguage and Object Language

If we were always to have complete knowledge of an agent's beliefs, then it would be

possible to use a simple list of facts and rules to represent the base set of those beliefs.

However, it is often the case that our knowledge is incomplete; we may know that an

agent either believes fact P or fact Q, but we don't know which. Such a description of

an agent's beliefs cannot be modeled by a list of facts. So the modelling process must

be extended to a description of an agent's beliefs. Since beliefs are wffs in a first-order

language, a metalanguage can be used to describe a collection of such wffs [Kle671. The

basic idea is to have terms in the metalanguage to denote syntactic expressions in the

first-order language used to encode an agent's beliefs. The latter first-order language is

called the object language, or OL, since it is the object of study of the metalanguage (ML).

Predicates in the metalanguage are used to state that an expression of the object language

is in an agent's theory of the world. The full expressive power of the metalanguage is

available for describing a given theory of the object language.

It is natural to choose a first-order language for the metalanguage, since we will be

interested in proof procedures in the ML as well as the OL. Let ML be a sorted, first-order

language with variables restricted to range over particular sorts. The domain of discourse of

the ML will be both the syntactic expressions of the ML, as well as the domain of discourse

of the OL. Thus the ML will be able to state relationships that hold between OL expressions

and the actual state of the world.

27

II•

A basic division of sorts of the ML is between terms that denote individuals in the

world, and terms that denote expressions in the OL. Among the former will be terms that

denote agents (Ao,A 1 ,...) and agents' theories of the world; these will be called T1 terms.

We will use the function th of one argument, an agent, to denote that agent's theory of the

world.

The other major sort of terms will denote formulas of the OL; these will be referred

to as TF terms. Restricting our attention for the moment to sentential formulas of OL,

there will be terms in ML that denote propositional letters in OL, and constructors in ML

for putting together more complicated formulas from these letters. For example, P in ML

denotes the propositional letter P of the OL,1 and the ML term and(P', Q') denotes the

sentence PAQ of the OL. These ML constructors form an abstract syntax [McC621 for OL

expressions.

Writing names of formulas using and, or, not, and imp as constructors is somewhat

cumbersome. For the most part we will use a syntactic abbreviation, enclosing an OL

formula in sense quotes,2 to indicate that the standard ML term for that formula is

intended. For example, we will write:

rPAQl for and(P', Q')

rPD(QVRP for imp(PI, or(Q', R'))

and so on

The rule for translating sense-quote abbreviations into TF terms of the ML is to replace

each predicate symbol P of the sense-quote expression by the ML term symbol P', and

each boolean connective by the corresponding ML boolean constructor. As more sorts are

introduced into the ML we will extend the sense-quote convention in various ways.

Finally, we introduce the ML predicates TRUE, FACT, and PR, each of which has

I The general convention will be to use primed terms in ML to denote the corresponding unprimed formulas in OL.

2 They are called sense-quotes to indicate that the sense of the expression is wanted, rather than its truth-value. In
[Kap71] these are called Frege quotes.

28

- . -r f ,-

an OL formula as one of its arguments. TRUE(f), where f is an OL formula, means that

f is actually true in the world under consideration. It is often the case that we will want

to describe a certain condition actually holding in the world, independent of whether some

agent believes it or not; for instance, this is critical to our reasoning about events in the

next section, where events are defined as transformations from one state of the world to

another.

We intend TRUE to have the normal Tarskian definition of truth, so that the truth-

recursion axioms are valid. Let the variables f and g range over OL expressions. Then we

can write the metalanguage axioms for truth-recursion in the object language as follows:

Vf -TRUE(f) - TRUE(not(f))

Vfg TRUE(f)VTRUE(g) TRUE(or(f, g))
(TR)

Vfg TRUE(f)ATRUE(g) m TRUE(and(f, g))

V fg TRUE(f)DTRUE(g) i TRUE(iinpf , g)

FACT(t, f), where t is an OL theory, means that f is one of the base set formulas

of the theory (and from which the rest of the theory will be derived by deduction). Using

FACT, agent Ao's previously exhibited beliefs about the world could be described by the

following ML predicates:

FACT(th(Ao), rON(B, CP)

FACTth(Ao), rHOLDING(Ao, DP')

FACT(th(Ao), rVzye ON(z, y)D-CLEAR(vyp)

The last FACT predicate describes a rule that agent Ao believes.

One special type of FACT that we will make frequent use of is a formula known to all

agents. We define the predicate CFACT on OL expressions to mean that a true expression

is a FACT for all agents, that is, a Common FACT:

29

Vf CFACT() D Va FACT(th(a), f)^TRUE(f) (CF1)

CF doesn't completely axiomatize what we intend a common fact to be, however, since

it doesn't say that every agent knows that every agent knows that every agent knows f,

etc.3 But a fuller characterization of CFACT must wait until the technical machinery for

describing belief-nesting is developed in a later subsection.

PR(t, f) means that f is provable in the theory t. As discussed previously, we will

assume that PR gives the closure of sentences in OL that can be generated by logical

deduction from an original set of FACTs. A simple axiomatization of PR can be given for

Hilbert-style (assumption-free) proofs. There is only one rule of inference, Modus Ponens:

Vtfg PR(t, imp(f, g))APR(t, f) D PR(t, g) (MP)

that is, from PDQ and P in the OL, infer Q. Since every FACT is an initial theorem of

the theory, we assert that each of these is provable:

Vtf FACT(t, f)DPR(t, f). (FP)

And in each theory the logical axioms of a Hilbert system need to be asserted; we assume

a sufficient set for the sentential case.

MP and the Hilbert axioms will be used in ML proofs of the provability of OL

statements; these axioms simulate a Hilbert-type proof system for an OL theory. This

simulation is necessary because in general there will be an incomplete ML description of

the OL theory, rather than a simple list of FACTs for that theory. In those special cases

when a list of FACTs is available, it is possible to run the proof procedure on the OL

theory directly. That is, since the intended meaning of the PR predicate is provability

in the OL theory, we can check whether the PR predicate holds in the ML by running

a theorem-prover in the OL. It also isn't necessary to use a Hilbert system, and we will

3 Common facts are meant to be the same as the 'any fool" concept of [McC78I.

30

-.--

feel free to exploit any system of natural deduction that is sound. The technique of using

a computable model of the intended interpretation of a predicate to determine the truth

of formulas involving that predicate is called semantic attachment [Wey80], and it will be

used extensively to simplify proofs in later sections.

The provability predicate PR does not have the same characteristics as TRUE, and

this is important in representing beliefs. For example, the fact that P is not provable doesn't

imply that -P is provable. If we identify provability with belief, -PR(th(Ao), rp) asserts

that P is not one of Ao's beliefs about the world, but this does not imply PR(th(Ao), .-,pFF),

i.e., that Ao believes -P. Also, it is possible to express that either Ao believes that C is

clear, or he believes that C is not clear:

PR(th(Ao), rCLEAR((CP)VPR(th(Ao), r-C LEAR(C);

this says something quite different from PR(th(Ao), rCLEAR(C)V-CLEAR(CP); the

latter is a tautology that every agent believes, while the former says something a lot stronger

about Ao's beliefs about the world.

Paralleling the truth recursion axioms TR, we can state rules for the provability of

compound OL expressions in terms of their immediate subexpressions. Because of the

nature of provability, the axioms for negation, disjunction, and implication, unlike their

truth-theoretic counterparts, are not equivalences.

Vtf -PR(t, f) C PR(t, not(f))

Vtfg [PR(t, f)VPR(t, g)] D PR(t, or(f, g))
(PR)

Vtfg [PR(t, f)APR(t, g)] - PR(, and(f, g))

Vtfg IPR(t, f)DPR(t, #)I C PR(t, imp(f, g))

These are all deducible from the logical axioms in the Hilbert proof system; for instance,

the last assertion is just a restatement of Modus Ponens.

Another interesting connection between the PR and TRUE predicates can be drawn

by looking at models of the OL. Suppose we have used FACT and PR to describe an

31

agent's theory T of the world. There will be some set of models that satisfy T, i.e., for

which all of T's theorems hold. The actual world will be one of these models just in case

all T's theorems hold for the world. This condition is statable in the ML as:

Vf PR(T, f)DTRUE(f)

In general this assertion will not be valid, that is, an agent's beliefs need not correspond to

the actual world. By introducing the predicate TRUE in the ML, we are able to state the

correspondence between a given theory of the world and the actual state of affairs in the

world.

3.2.2 Knowledge and Belief

The PR and TRUE predicates can be used to state our fundamental definitions of

knowing and believing for an agent. BEL(a, f) means that agent a believes f; KNOW(a, f)

means that agent a knows f. Then we have the definitions:

Vaf BEL(a, f) M PR(th(a), f)
(BI)

Vaf KNOW(a, f) m BEL(a, f)ATRUE(f)

That is, we identify belief with provability in an OL theory, and knowledge as a belief that

actually holds in the world. In model-theoretic terms, a sentence is known to an agent if

the sentence holds in all of his models, and the actual world is a model for that sentence.

The definition of a common fact in CF1 means that all common facts are known to all

agents.

We already know that the inference process used in deriving new beliefs from old ones

is only approximated as logical consequence, yet we should still expect this approximation

to correctly model some of the characteristics we attribute to belief. For instance, if a

rational agent believes that PDQ, and he doesn't believe Q, then it should be the case that

he doesn't believe P. Translating to the above notation yields the sentence:

32

.77

BEL(Ao, rPDQ-;)A-BEL(Ao, rQl) D .BEL(Ao, rW')

To illustrate the use of axioms for belief and provability given so far, we exhibit a n-.tural

deduction proof of this sentence in ML:

1. BEL(Ao, rpDQT) given

2. PR(th(Ao), 7PDQ') 1,B1

3. -BEL(Ao, rQ) given

4. .PR(th(Ao), '_T) 3,B1

5. PR(th(Ao), tP'W)DPR(th(Ae), r) 2,PR

8. '-PR(th(Ao), VP') 4,5 contrapositive

7. -BEL(Ao, rp1) 6,B1

This particular proof in the ML cannot be done by semantic attachment to the OL, because

it involves reasoning about what isn't provable in the OL theory.

At this point we have presented the basic ideas and definitions for a syntactic approach

to representing and reasoning about agents' beliefs. The rest of this section is devoted to

exploring various technical issues that arise when extending the previous analysis to talking

about individuals.

3.2.3 Individuals

By restricting ourselves to the case of sentential formulas in OL, we have been able to

present the basic concepts for representing the beliefs of an agent more simply. Additional

complications arise when dealing with terms in the OL that denote individuals rather than

truth-values. But a ML encoding of these terms is necessary in order to express such

concepts as agent An knows who B is.

To talk about the individuals that the OL refers to, we introduce an additional sort

into the ML, whose denotation will be the function terms of the OL. This sort will be called

33

TT, and consists of the following members:

(1) variables a,#,....

(2){/(t ... t,},where t E TT;

(TT)
(3) q(t), where t E T [the "standard name" function];

(4) nothing else.

The ML variables a, 3, ... , range over OL function terms. For example, we can state that

A0 believes a particular block is on C by asserting the ML expression:

3 BEL(Ao, ON'(, C')).

In this expression there are two ML terms in TT, namely, a and C'. C' is a 0-ary function

(or constant) in TT that denotes the constant term C in OL. 4 ON' is a type of ML term

that hasn't been used explicitly before; it is a member of TF because it names an OL

formula. It takes two arguments, each of which is a ML term denoting an OL term, and

constructs an OL formula that is the OL predicate ON of these arguments. So the ML

term ONI(a,C') denotes the OL expression ON(A,C), where A is the OL term denoted

by a.

It is now possible to give a full definition of TF terms:

(1) variables f,g,...;

(2) {f"(t1 ,. ..,t)}, where ti E T' [boolean constructors, e.g., and];
(TF)

(3) (,"(tl,..., 4)), where ti E TT [predicate constructors, e.g., ON];

(4) nothing else.

and T, terms:
4 We extend the prime convention to cover ML terms in T as we as TF; that is, t in ML denotes the unprimed

term t in OL.

34

(1)variables x,y,...;

(2) (f(t 1 ,.. .,tn)}, where ti E T [individual constants and functions];

(3) A(t), where t E TT [the denotation function];

(4) nothing else.

We will also find it convenient to extend the notion of sense-quote abbreviations to

handle ML terms involving TT variables. The previous rules are expanded in the following

way: all function symbols in the sense-quote expression are replaced by their primed

forms, while any symbols used as variables in the surrounding ML expression remain

unchanged. For example, the sense-quote expression in 3a KNOW(Ao, rON(a, b(C)f)

is to be understood as a syntactic abbreviation for the ML term ON'(a, b'(C)). We have

not yet said what happens to Tf variables in sense-quote expressions; this must wait until

standard names are explained in the next subsection.

The introduction of TT terms into the ML completes the descriptive power of ML

for OL expressions. It also lets us handle some of the well-known denotational puzzles

in the philosophy literature. One of the simplest of these is the Morningstar-Eveningstar

description problem. Both Morningstar and Eveningstar are actually the planet Venus

seen at different times of the day. An agent Ao believes that they are not the same;

further, he doesn't have any knowledge about either being the planet Venus. Let MS,

ES, and VENUS be OL terms that denote the Morningstar, the Eveningstar, and Venus,

respectively. The following set of ML formulas describes this situation:

TRUE(rES = VENUS -)

TRUE(rMS - VENUS;')

BELAo, roMS 0 ESf)

-BEL(Ao, rES - VENUS')

-BEL(Ao, MS = VENUS)

It is perhaps easiest to explain this set of sentences in model-theoretic terms. The intended

interpretation of the the OL terms ES, MS, and VENUS is the same object, namely

35

L . o
S.'o

. L .. . - . . : - . .- . ._- ° _. i

the planet Venus. The two TRUE predicates establish this, since they assert that these

three terms denote the same individual in the world. On the other hand, the first BEL

predicate asserts that in the models of Ao's theory of the world, MS and ES denote

different individuals. This means that the actual world cannot be among the models of this

theory. Further, the last two BEL predicates assert that ES and MS are not provably

equal to VENUS in this theory; hence there will be some models of the theory for which

ES VENUS holds, some for which MS VENUS holds, and some for which neither

holds. From this we conclude that not only is A0 mistaken as to the equality of ES and

MS, he also is unsure about whether either is the same as VENUS. [McC79 lists some

other philosophical puzzles that can be handled in a syntactic formulation.

3.2.4 Knowing Who Someone Is A

One of the problems that any formal treatment of belief must confront is that of

describing when an agent knows who or what something is. For example, the following two

English sentences say something very different about the state of A0 's knowledge:6

(1) "Ao knows who murdered John."

(2) "Ao knows that someone murdered John."

The police would certainly be interested in talking to A0 if the first statement were true,

while the second statement just means that A0 read the local tabloid. We might paraphrase

the first statement by saying that there is some individual who murdered John, and Ao

knows who that individual is. The seennd statement can be true without Ao having any

knowledge about the particular individual involved in the murder.

How is the distinction between the two sentences above to be realized in this formalism?

The second sentence is easy to represent:

BEL(Ao, r3x MURDERED(z, JOHN) (WI)

6 A similar problem appears in [Qui7l]

36

This simply says that Ao believes in the existence of an individual who murdered John. It

might be supposed that the first sentence could be represented in the following way:

3a BEL4Ao, r-MURDERED(a, JOHN) (W2)

W2 says that there is a MURDERED predicate in Ao's theory of the world relating some

individual (a's denotation) and John. Unfortunately, this isn't quite strong enough; if the

denotation of a is the OL term murderer(JOHN), then W2 is virtually a tautology, and

doesn't say that Ao knows who murdered John. Indeed, if the OL expression in W1 is

skolemized, it becomes obvious that WI and W2 are equivalent.

What seems to be going on here is that different names have a different status as far as

identifying individuals is concerned. 'Bill" is a sufficient description for identifying John's

murderer, whereas "John's murderer" is not. The question of what constitutes a sufficient

description is still being debated in the philosophical literature. But for the purposes of

this paper, it will suffice if we have a name that is guaranteed to denote the same individual

in every model of the OL. By asserting a predicate involving this name in Ao's theory of

the world, it will be possible to encode the fact that A0 believes that predicate for the given

individual. Names that always denote the same individual are called standard names.

The formal method of establishing standard names is straightforward. Consider the

set of all individuals involved in the situation we wish to consider.6 Include in the OL a

set of constant symbols, the standard name symbols, to be put in one-one correspondence

with these individuals. The language OL will be partially interpreted by specifying this

correspondence as part of any model of the language; this means that the only models of

OL we will consider are those that are faithful to the standard name mapping.

In the metalanguage, we introduce the standard name function ti of one argument (see

the definition of TT terms above). This function returns the standard name of its argument.

Generally we will use lower case Greek letters from the later part of the alphabet as ML

IWe restrict ourselves to countable sets here.

37

variables for OL standard names [p, a,, ...]. The metalanguage statement of "AO knows

who the murderer of John is" then becomes:

:.p (.(~) -- p) A KNOW(Ao, rMURDERED(p, JOHNP) (W3)

Because p denotes a standard name, the only models of this statement are those in which

the same individual x murdered John. This is in contrast to WI and W2 above, which

• "allow models in which any individual murdered John. An immediate consequence is that

W and W2 are derivable from W3, but not the other way around.

So in order to assert that AO knows who or what some individual B is, we write in the
ML: 7

3xp (9(z) - p) A KNOW(Ao, rB 1

By modifying the sense-quote translation rules slightly, it is possible to write OL expressions

involving standard names much more compactly. The modification is to assume that any

ML variable of type T1 occurring within a sense-quote gets translated to the standard

- name of that variable. With this rule, for example, the above assertion comes out as

~ ~3z KNOW(Ao, rB .

We will use the predicate KNOWIS(a, #) to mean that the agent a knows who or

what the OL term denoted by $ refers to. The definition of KNOWIS is:

Va# KNOWIS(a,i) m IzKNOW(a, r# = zl) (KW)

Note that the property of being a standard name is a relation between a term of the OL and

models of this language, and hence cannot be stated in the OL. The use of a metalanguage

allows us to talk about the relation between the OL and its models.

7 This analysis essentially follows that of [Kap71, with the extension of standard names to all individuals in the

domain, rather than just numbers and a few other abstract objects. There are problems in using standard names for
complex individuals, however; see IKap7l].

38

r

One of the proof-theoretic consequences of using standard names is that every theory

can be augmented with inequalities stating the uniqueness of individuals named by standard

names. In the metalanguage, we write:

VZY zX 3 y D Vt PR(t, &i') (SN)

Formally, the definition of a standard name can be axiomatized in the ML by intro-

ducing the denotation function &.8 A(a), where a denotes an OL term, is the denotation

of a in the actual world; it is the inverse of the standard name function, since it maps an

OL term into its denotation. There is an intimate relation between the denotation function

and equality statements in OL formulas describing the world:

Va TRUE(ra &(' - (a) - A(p) (DI)

that is, two OL terms are equal in the actual world just in case they denote the same

individual; DI can be viewed as a definition of the intended interpretation of equality. The

prime purpose of the denotation function is to tie together the denotation of terms in the

OL and the ML. For standard names, it can be used to state that the denotation of a

standard name is the same individual in all situations, something that cannot be done with

equality predicates in the OL:

YX A(qz))== X (D2)

For example, by asserting q(VENUS) = VENUS' in ML, we fix the denotation of the

OL term VENUS' to be the individual denoted by the ML term VENUS in all models

of the OL.

The introduction of standard names with fixed denotations across all models makes

'This is Church's denotation predicate in function form IChu51J; since a term can hve only one denotation, it is
simpler to use a function.

39

the task of relating the OL to the ML easier. By introducing this "common coin" for

naming individuals, we are able to write expressions of the OL that represent beliefs without

constantly worrying about the subtle consequences of the denotational variance of terms in

those expressions. Standard names will play an important role in describing belief-nesting

(beliefs about beliefs), in describing executable actions, and in simplifying the deduction

process.

3.2.5 The Object Language as Metalanguage

In this subsection we extend the OL to include a description of another object language

OL'. Thus extended, the OL can be viewed as a metalanguage for OL. The reason we

want to do this is that it will be necessary for representing an agent's view of a world

that is changing under the influence of events. In the next section we will show how an

agent can model the way in which the world changes by describing what is true about

different states of the world connected by events. But to describe these states of the world,

or situations, the agent's theory must talk about sentences of another language holding in

a given situation.

Before trying to extend the formal apparatus of the OL to describe another OL, it

is helpful to examine more closely the relation between the ML as a means of studying

the OL and as a means of describing the actual world. This is because the structure of a

ML/OL pair will be very similar no matter what the depth of embedding; and the simplest

such structure to study is obviously the topmost one. Although we initially characterized

the ML's domain of discourse as including that of the OL, it appears that we have not

made much use of this characterization. In describing the models of OL, however, it was

necessary to pick out the model that was the actual world; this was done with the predicate

TRUE. And it was impossible to state the definition of a standard name without appealing

to terms in the ML that referred to individuals in the actual world. So, in fact, we have

already used the ML to characterize the actual state of the world and the individuals that

40

populate it.

We have stated that agents' beliefs are represented as first-order theories of the world.

The ML is, by the above argument, just such a theory; but whose theory of the world is

it? One useful interpretation is to take what we will call the egocentric view: a theory

in the ML is identified as the theory of a particular agent. That is, suppose we were to

build a computer agent and invest him with a ML/OL structure as a way of representing

other agents' beliefs. Then the nonlogical axioms of the ML would constitute the computer

agent's theory of the world. The interpretation of the ML predicate TRUE would be "what

the computer agent believes about the world," and of the predicate KNOW, "what another

agent believes that agrees with what the computer agent believes." In this interpretation,

there is no sense of absolute truth or knowledge; the beliefs of one agent are always judged

relative to those of another.

Suppose we identify the agent Ao with the ML; what interpretation does the OL

theory th(Ao) have? Interestingly enough, it is Ao's introspective description of his own

beliefs. Unlike other agents' theories of the world, th(A0) shares an intimate connection

with formulas that hold in the ML. For a rational agent, it should be the case that if

he believes P, then he believes that he believes P. We can state this connection by the

following rule of inference:

Belief attachment: If the agent a is identified with the ML, then from

TRUE(f) infer BEL(th(a), f).

Introspection will be useful when we consider planning, because a planning agent must be

able to reflect on the future state of his beliefs when carrying out some plan.

If the metalanguage is intended to describe the actual world, then it is reasonable to

ask what the relation is between models of the ML and models of its OL, and whether

this connection can be formalized in the ML. We start by adding predicate symbols to the

ML whose intended meaning is a property of the actual world, rather than of the OL and

41

its models. Consider such a predicate P of no arguments, and let its intended meaning

be "222 Baker Street Apt 13 is unoccupied:" that is, the actual world satisfies P just in

case this apartment is indeed unoccupied. In the OL there is also a predicate symbol P of

no arguments whose meaning we wish to coincide with that of the ML predicate P. The

fact that these symbols are the same is an orthographic accident; they come from different

languages and there is thus no inherent connection between them. However, because the

ML can describe the syntax and semantics of the OL, it is possible to axiomatize the desired

connection. Let P be the ML term (in TF) denoting the OL predicate P. Then P in the

ML and OL have the same meaning if

PmTRUE(P) (RI)

is asserted in the ML. For suppose the actual world satisfies P in the ML; then TRUE(P')

must also hold, and hence by the meaning of TRUE, the actual world is also a model for P

in the OL. Similarly, if the actual world falsifies P in the ML, TRUE(not(P)) must hold,

and the actual world falsifies P in the OL also. So the proposition named by PI holds just

in case Apt. 13 at 222 Baker Street is unoccupied, and thus the meanings of P in the ML

and P in the OL coincide.

For predicates that have arguments, the connection is complicated by the need to make

sure that the terms used in the ML and OL actually refer to the same individuals. So, for

example, if P is a ML predicate of two arguments that we wish to mean the same as the

OL predicate P, we would write:

Vd# TRUE("P(a, #P)wP(A(aK), A(#)); (R2)

that is, since the denotation function A gives the individuals denoted by the OL terms a

and #, P in the ML agrees with P in the OL on these individuals. Using standard names,

R2 could be rewritten as

42

''? ' h ',:U - ,' --.- -. ? '_ : - . :. -_. -. L L.I-. G - . ? - --. : -, : -i-', -i - i .i ._-.-..

VxY P(z, y)*TRUE(rP(z, P) (R3)

since, by D2, A(q(x)) = z, A(=()) y. Note that the standard name convention for

sense-quotes is in force for R3.

Using TRUE and equivalence, axioms like R3 cause predicate symbols to have a

: standard meaning across the ML and OL, in much the same way that D2 formalizes

standard names using the denotation function and equality. But while nonstandard names

are a useful device for encoding an agent's beliefs about individuals that the agent may

have misidentified (recall the Morningstar-Eveningstar example), nonstandard predicates

don't seem to serve any useful purpose. So we will assume that for every predicate symbol

P in ML, there is a function symbol of the form P' whose denotation is the OL predicate

P, and there is an axiom of the form R2 equating the meaning of these predicates.

To make the OL into a metalanguage for OL', we simply introduce sorts that denote

OL' expressions into the OL, in exactly the same way that it was done for the ML. In

addition, the various axioms that tie the ML and OL together (MP, D1, etc.) must also

be asserted in the OL. Unfortunately, this also means that the ML itself must have a new

set of terms denoting terms in the new OL sorts; the machinery for describing embedded

ML/OL chains rapidly becomes confusing as the depth of the embedding grows. So in this

paper we will supply just enough of the logical machinery to work through the examples

by introducing two conventions; readers who want more detail are referred to [Kon8lI].

The first convention is an extension of the sense-quote abbreviation to include ML

variables of the sort T, (denoting formulas of the OL). When these occur in sense-quotes,

they are to be translated as the standard name of the variable; hence they denote the name

of an expression. To take an example, we will complete the axiomatization of CFACT:

Vf CFACT(f) D Va KNOW(a, rCFACT(f l) (CF2)

43

CF2 asserts that if f is a common fact, then every agent knows it is a common fact. The

sense-quote term rCFACT(fi denotes the OL expression CFACT(fl), where f' is the

standard name of the OL' expression corresponding to f.

The second convention is to allow embedded sense-quotes to form the standard name

of an expression, as in

Vf CFACT(rCFACT(f)DCFACT(rCFACT(f) -)). (CF3)

Here the embedded sense quotes translate to the standard name for the OL' expression

CFACT(f'). CF3 says that common facts will be inherited down to the next level of

embedding in the ML/OL chain.

In practice, we hope that the depth of embedding needed to solve a given problem will

be small, since the complexity needed for even the three-level structure of ML, OL, and

OL' is substantial. Also, the technique of semantic attachment can be used to reduce the

complexity of reasoning about embedded structures by attaching to a particular level of

an embedded structure and reasoning in that language. In Appendix A we use embedded

ML/OL structures to solve the wise man puzzle, which involves reasoning to a depth of

embedding of three (ML, OL, and OL'); we exploit semantic attachment to simplify the

reasoning involved.

3.3. The Interaction of Actions and Beliefs

The previous section laid the groundwork for a syntactic treatment of knowledge and

belief in a static world. This must be integrated with a formal treatment of actions in order

to accomplish our original task of formalizing the interaction of knowledge and action. We

examine the following two questions:

e What knowledge is required by an agent to successfully perform an action?

e What knowledge does an agent gain in performing an action?

44

:I

The methodology we will use is to apply the situation calculus [McC89] approach to first

formally describe the way in which the world changes as events occur. It will then be

assumed that this formal system is a reasonable approximation to the way an agent reasons

about changes in the world: this means that it becomes part of an agent's rules about

the world. By simply attributing a facility for reasoning about events to agents, it turns

out that we are able to answer both these questions formally, and that this formalization

corresponds well with our intuitions about real agents. This is essentially the same method

that was used by Moore in [Moo8O]; here, we show that it can be successfully carried out

for a syntactic formalization of knowledge and belief.

Once the formal requirements for reasoning about events have been specified, we

consider how an agent might plan to achieve a goal using his knowledge of actions. We

conclude that planning is inherently a process of self-reflection: that is, in order to construct

a plan, an agent must reflect on what the state of his beliefs will be as the plan is undergoing

execution. Such a self-reflection process is represented naturally by a ML/OL structure in

which the planning agent is identified with the ML, and his future states are theories of

the OL. We will show how it is possible to construct plans within this representation, and

extend it to include plans that involve other cooperative agents.

3.3.1 Situations

In the situation calculus approach, events are taken to be relations on situations, where

situations are snapshots of the world at a particular moment in time. It is natural to

identify situations with models of a language used to describe the world; in this case, we

will use the language OL of the previous section, because the ML for describing models of

the OL is already laid out. In the ML, situations will be named by terms, generally the

constants (So, S1,...). A formula f of the OL holds in a situation e when the situation

satisfies f; the ML predicate H(a, f) will be used to indicate this condition. If the situation

So is singled out as being the actual world (and the initial world for planning problems),

45

then TRUE can be defined in terms of H:

Vf TRUE(f)-H(So, f). (HI)

Since H describes satisfiability in a model, the truth-recursion axioms TR are valid for H

as well as TRUE.

If we consider agents to be part of the domain of discourse, then their beliefs can

change from one situation to the next, just as any other inessential property of an agent

might. But if an agent's beliefs change from situation to situation, then the theory that is

used to model these beliefs must also change. One way to represent an agent's changing

beliefs is to ascribe a different theory to an agent in each situation to model his beliefs in

that situation. In the ML, we will write tha(a, a) to denote agent a's beliefs in situation a;

if So is taken to be the actual world, then it is obvious that Va tha(a, So) = th(a).

But we might now ask what situation the expressions in each of these theories are

about. Suppose that the OL sentence P is a member of tha(Ao, SI), and thus one of Ao's

beliefs in situation S1. We would naturally want P to be a property that A0 believes to

hold of situation S, (and not So or some other situation). That is, tha(a, a) represents agent

a's beliefs in situation a, about situation a. In informal usage we will call the situation we

are focusing on the current situation, and say "the agent a in situation a" when we are

referring to the agent's beliefs in that situation. Later we will show how to represent an

agent's beliefs about situations other than the one he is currently in.

For each situation, an agent's beliefs in that situation are specified by a theory. Given

this arrangement, we define the new predicates B and K as similar to BEL and KNOW,

but with a situation argument:

Vaaf B(a, s, f) PR(tha(a, s), f)
(B2)

Vaaf K(a, s, f) w B(a, a, f)AH(a, f)

B(a, a, f) means that in situation a agent a believes that f holds in a; K is similar, with the

condition that f actually holds in a. Note that the underlying predicates FACT and PR

46

do not have to be changed, since they are defined on theories of OL rather than models.

Thus the properties of BEL and KNOW described in the previous section also hold for B

and K in any particular situation. BEL and KNOW can be defined as B and K in the

situation So.

Several extensions to the formalism presented in the first section must be made to deal

with situations. A new denotation function 6 takes a situation argument as well as an OL

term: 6(s, a) is the denotation of a in situation 8. A(a) gives the denotation of a a in

situation So, and is definable as 6(So, a). The appropriate forms of DI and D2 are:

V,.# H(r. #1 M 16(8, a) =6(0, 0i)]
(D3)

VX b(8, q(z)) = X

This last says that standard names always have the same interpretation in every situation.

Non-standard names can change their denotation in different situations, e.g., the block

denoted by "the block Ao is holding" may be changed by Ao's actions.

Finally, we require the appropriate versions of RI-RO, where these axioms are ap-

propriately generalized to refer to all situations.

3.3.2 Observables

Following Moore [Moo80], we recognize three ways that an agent can acquire beliefs in a

situation:

* He can observe the world around him.

* His beliefs about past situations persist in the current situation.

e He can reason about the way in which the current situation arose from events that

occurred in previous situations.

In the next few subsections we describe how an agent's beliefs persist and how he reasons

about events; here we formalize what it means for a property of the world to be observable.

It is certainly true that there are many properties of the world we live in that are not

47

" " . ."
" " ' " " " " " "' " '" ' "" " ." . .". .. ." "- ,

directly observable; for example, consider a gas oven whose pilot light is completely encased

and hence not visible. Whether this pilot light is on or off isn't an observable property, but

there are other observations that could be made to test what the state of the pilot light is,

e.g., by turning on the oven and observing whether it lights. What we actually consider to

be observable depends on how we formalize a given problem domain; but it is important

for a planning agent to be able to make the distinction between properties of the world he

can observe directly, and those he must infer.

One of the reasons that it is handy to have a separate theory representing the beliefs of

an agent in each situation is that we then have a way of describing the effect of observable

properties on an agent's beliefs. Formally, we can state that a property is observable by

asserting that in every situation, subject to certain preconditions that are required for the

felicitous observation of the property, an agent knows whether that property holds or not.

For example, in the OL let o be an oven, and let LIT(o) mean that o is lit. Then LIT(o) is

asserted to be observable by:

Vao, H(s, rAT(a,or) D [K(a,s, rLIT(op)VK(a,a, rF-LIT(op)] (01)

that is, if the agent is actually at the oven, he knows either that it is lit, or that it is

not lit. Recall from the previous section on knowledge and belief that this says something

very strong about the state of a's knowledge, and is not derivable from the tautology

K(a, 8, r-LIT(o)V-LIT(oP).

3.3.3 Events Types

Event types are relations on situations; a given event type describes the possible states

of the world that could result from an event occurring in any initial state. We will use the

three-place predicate EV in the metalanguage to describe event types: EV(e, si, os), where

e is an event type and si and at are situations, means that of results from an event of type

48

e occurring in a,. An event is an instance of an event type,9 but generally we will not have

to distinguish them for the purposes of this paper, and we will use "event" for "event type"

freely.

Generally the events of interest will be agents' actions, and these will be constructed

in the ML using terms representing actions, agents, and the objects involved in the action

(the parameters of the action). If act is an action, then do(a, act) is the event of agent a

performing this action. Consider the situation calculus axiomatization of a simple blocks-

world action, puton(z, V), where the parameters of the action are blocks:

Vaxyaisf EV(do(a,puton(z, y)), si, of) D H(8,, rCLEAR(yP)A

H(8i, rHOLDING(a,xl)A (POI)

H(e1 , 'ON(z,y)A

H(e1 , r-HOLDING(a,zP)A

Vaxysis! EV(do(a,puton(z, y)), sa, of) D
[Vf SAF(f)Af 76 rCLEAR(yvPAf 3 rHOLDING(a,zP D (P02)

H(as, f)=--H(a$, f)1

The form of P01 is an implication, so the right-hand side describes the conditions under

which situations oi and af are related by the event of a putting z on y. The first two

conjuncts on the right-hand side are essentially preconditions for the event to occur, since

they state conditions on the initial situation a, that must be satisfied for EV to hold. The

preconditions are that CLEAR(q(y)) and HOLDING(q(a), q(z)) must hold in situation

:i; note that the standard names for the parameters are indicated by the sense-quote

convention. If the preconditions are not met, then there is no situation of that is the

successor to ai under the event e. The rest of the conjuncts describe which formulas of the

OL are to hold in the new situation af.

OFor example, "Borg's winning of Wimbledon yesterday was fortuitous" is a statement about a single event, but
"Borg winning Wimbledon has happened five times" describes an event type that had five particular instances.

49

Ao

P02 specifies that all formulas of a certain type that hold in s are also to hold in

a. It is thus a frame axiom for the event e, describing which aspects of the situation ai

remain unchanged after the event occurs. The predicate SAF stands for Simple Atomic

Formula; it picks out those formulas of the OL that are composed of atomic predicates

over standard names. Although SAF applies only to nonnegated atomic formulas, the

frame axiom carries over negated atomic formulas as well, since H(s, not(f)) is equivalent to

-H(8, f).10 Among the nicer features of this axiomatization is that events whose outcomes

are conditional on the initial state can be easily described. For instance, consider the event

of an agent turning on a gas oven that has a pilot light. If the pilot light is on, the oven will

be lit; if the pilot light is off, the oven will have whatever status, lit or unlit, it had before

the event occurred (the oven may already have been on). Let PL(o) be an OL predicate

meaning "the pilot light of oven o is on"; and let LIT(o) mean "oven o is lit." Then the

event of an agent turning on o can be described as:

Vaeisfo EV(do(a,light(o)), , s8) s

H(i,, rAT(a,o)) A
H(si,rPL(O):)H(sf,rLIT(OP) A (LTI)
H(s,, r ..PLgop) D [H(sj,, rLIT(oP)-H(i, rL/Tiopf]

Vas8sfo EV(do(a,light(o)), , 8f) D
[Vf SAF(f)Af 7A rLIT(oP D H(8i, f)--H(s,f)J (LT2)

The second conjunct of LTI gives the result of the event in case the pilot light is on: the

oven will be lit. The third conjunct says that if the pilot light is off, the oven will be lit in

8f just in case it was lit in 8i, i.e., its status doesn't change. LT2 is the frame axiom.

3.3.4 Reasoning about Situations and Events

The axiomatization of events as relations on situations enables us to talk about what is

10 The axiomatization of events given here is a standard one in the Al literature on formal planning, and there
are well-known problems involving the use of frame axioms like the one above. We are not attempting to add any
new insight to this particular aspect of planning; but we are interested in having a formal description of events to
integrate with our theory of belief, and this seems to be the best formulation currently available.

50

._ , , ..,. ,,. . . . -'

true in the world after some events have occurred starting from an initial situation (which

we will generally take to be So). What it doesn't tell us is how an agent's beliefs about the

world will change; nothing in the PO or LT axioms gives any insight into this. It might

be suspected that, as events are described by axioms as changing the actual state of the

world, this description might be extended to cover agents' theories as well, e.g., changing

Ao's theory in situation So (ths(Ao, So)) into his theory in situation S, (ths(Ao, S1))." t But

there is no obvious or well-motivated way to make modifications to axioms like PO and LT

so that they take into account agents' beliefs about a situation rather than what actually

holds in the situation.1 2 What is needed here is a principled way of deriving the changes

to an agent's beliefs that result from an event, given a description of the event as a relation

on situations. Credit for the recognition of this problem belongs to Robert Moore, and we

will formalize the solution he presented in his thesis, the main points of which follow.

The solution to this difficulty lies in making the observation that agents are reasoning

entities. Consider how agent Ao might reason about some event E; let us suppose the

event is that agent A0 turned on the oven in situation So, and that the result was that

the oven was not lit in situation St. What should Ao's beliefs be in situation S? First,

by observation, he knows that the oven isn't lit. He also believes (in S) that the current

situation resulted from the event E occurring in situation So. So Ao reasons as follows: if,

in situation So, the pilot light of the oven had been on, then in S, the oven would be lit,

since he turned it on. But the oven isn't lit; hence the pilot light couldn't have been on in

So, and remains not on in St.

There are several important things to note about this analysis. The first is that, as

*1 Indeed, it might be thou&+t that the most widely known AI planning system, STRIPS, has just such a mechanism
in the its add/delete list approach to describing events. However, closer examination reveals that because STRIPS
makes the assumption that it has a partial model in the sense of [WeySol, it is actually slightly less descriptive than
the situational approach described above [Nils0.

12 There is one proposal that is suggested by the our use of H to refer to the actual situation and PR to statements
that an agent believes about a situation, namely, to replace all predicates involving H with the corresponding
ones involving PR. However, it can be shown that the substitution of PR(the(A o s)...) for Ms) yields
counterintuitive results for A0 's beliefs.

suggested previously, Ao's beliefs in situation S comes from only three sources: observa-

tions ("the oven is not lit"), persistence of beliefs about previous situations ("if in So the

pilot light had been on..."), and beliefs about the way events change the world. This latter

is equivalent to having some form of POI as part of Ao's beliefs in situation Si. From

these three sources Ao is able to generate a new set of beliefs for S1 .

The second thing to note is that none of Ao's reasoning in S, could have taken place

unless he believed that Si resulted from So via the event E. Beliefs about what sequence

of events led to the current situation play a very important role in reasoning about that

situation, and, like other beliefs, they can be mistaken or inferred from other evidence.

Suppose, for example, that Ao suddenly sees the oven become lit. He might infer that the

only way that could happen when it wasn't previously lit would be for an agent to turn it

on; this is inferring that the situation where the oven is lit is connected by a certain event

with a previous situation where the oven wasn't lit. We will not be concerned with this

kind of inference here, although we note the possibility of doing event recognition in this

framework. The events we are interested in are actions, and the assumption we will make

for the remainder of this paper is that an agent knows what action it is that he performs

in executing a plan.

A third aspect of this reasoning that is unusual is that the axiomatization of events

is being used in a different way than a planning program would normally consider doing.

Typically, a planner uses an event description like LT1 to form plans to light the oven, and

the side condition that the pilot light be on is one of the things that can go wrong with

the plan, and so must be taken into account as a subgoal. However, in the above example

Ao has used LT1 to reason about a property of the world that is not available to his direct

observation, that is, as a test. This is an important characteristic for any formalism that

combines a description of agents' beliefs with a description of events; a single description

of an event should suffice for an agent to reason about it either as a means of effecting a

change in the world, or as a test that adds to his beliefs about the world.

52

" " ' - - --

Finally, the precondition that Ao be at the oven to turn it on translates naturally in

this analysis into a precondition on Ao's beliefs in situation So. If Ao is to reason that

situation S, is the successor to So under the event E, he must believe that he was actually

at the oven in situation So. For if he doesn't believe this, then he cannot use POI to infer

anything about the results of his action.

We might summarize the analysis of this section in the following way: by making the

simple assumption that an agent reasons about the way in which situations are related by

events, we are able to characterize in a natural way the belief preconditions required for

executing an action, and the effects of actions on the subsequent belief state of an agent.

The interaction of observation and reasoning about situations gives an agent the power to

plan actions that perform tests, as well as change the state of the world.

3.3.5 Formalizing Agents' Reasoning about Events

We now give a formalization that implements the ideas just laid out. The first

requirement is that we be able to describe an agent a in situation s reasoning about other

situations, especially the one just preceding. Since the formulas of the(a, s) all refer to

properties of situation s, we must enrich the OL so that formulas in the OL can refer to

different situations. Using the techniques of belief-nesting of the previous section, we add

to the OL the predicate H corresponding to the ML predicate of the same name. Then the

OL expression H(Si, rJ-1) means that the OL' formula P holds in situation S1, regardless
of what theory this formula appears in.13 With the addition of the H predicate to the OL,

the notion that all formulas in th(a, 8) refer to properties of a can be formalized as:

Vaf PR(th(a, 8), f) - PR(th(a, 8), rH(8, f) (H2)

H2 can be paraphrased by saying that an agent believes P in situation a just in case he

13 We will take { 0 ,S to be standard names for situations in all languages. It will be assumed that standard
names are always used to name situations.

53

-.-. -.... ..-- -. ,.. ?-. ii.. .. :. i . _ ,_ - - "-., .•. .

mm.

believes that P holds in situation a. Given H2, it is possible to describe agents' theories as

consisting purely of formulas in H; but the added level of embedding puts this technique

at a disadvantage with respect to using other predicates from OL to describe an agent's

beliefs about the current situation.

It is also possible to formalize the notion that beliefs about previous situations persist,

or are carried over into succeeding situations. Suppose that in situation S an agent has a

belief of the form, "in a previous situation Si, P was true." Then if S.+, is the successor

to S, under some event, this belief is still valid. Formally, we can assert this with the ML

axiom:

Y.f Va e EV(e, si, of) D [Vasf B(a, ,, rH(s,! p)DB(a, of, rH(s, f)J (H3)

The antecedent of the implication says that ai and of must be connected by some event

for beliefs to be carried over from a, to of; this is necessary because we don't want agents

to inherit beliefs from their future states. By phrasing the beliefs in terms of the predicate

H, H3 carries over beliefs about all situations previous to and including a,.

One of the consequences of H3 is that once an agent forms a belief about a situation,

he holds that belief about that situation for all time. Since beliefs can be mistaken, it

might happen that an agent observes something that forces him to revise his previously

held beliefs. In that case, H3 is too strong, and the resultant theory will be inconsistent.

We recognize that the general problem of reconciling inconsistent beliefs that arise from

:. different sources (called belief revision) is a hard one, involving both conceptual and tech-

nical issues, and it is not part of this research to say anything new abrut it.14 Nevertheless,

it is worthwhile to note that because the ML has terms that refer to agents' theories in

different situations, it may be possible to describe a belief revision process formally in the

ML.

14 Doyle [Doy78] worked on this problem under the rubric OTruth Maintenance,* and more recent work in non-

monotonic reasoning also considers this problem.

54

3.3.6 An Example of a Test

Given the preceding techniques for describing what an agent believes to hold in situa-

tions other than the one he is currently in, we can show formally that A0 can use the LT

axioms as a test to figure out whether the pilot light is on or not. In the initial situation

So, we will assume that Ao knows he is at the oven 0 (where 0 is the standard name for

the oven), and realizes that it is not lit:

Initial Conditions in the ML

(1) K(Ao, So,r'AT(Ao, O)M-LIT(OP) given

(2) K(Ao,S 1 , r-EV(do(Ao, light(O)), So, SIP) given

The style of proof we will exhibit will be natural deduction, with assumption dependencies

noted in square brackets in the justification for a line of the proof. Given the initial

conditions, we next show that Ao can observe whether or not the oven is lit in situation

SI:

(3) Vf SAF(f)Af 7 7LIT(O D H(So, f)mH(SI, f) 2,B2,LT2

(4) SAF(rAT(Ao, 0) definition of SAF

(5) H(SI, rAT(Ao, Or) 1,3,4,B2

(6) K(Ao, Sl, r-LIT(O)vK(AoS$, r,,LIT(O) 5,01

Line 3 comes from the frame axiom for light, and lets us infer that Ao is still at the oven

in situation Si (line 5). The observation axiom 01 is then invoked to assert that A.o will

know what the state of the oven is in that situation.

Throughout this proof, we will be interested in two theories of the OL: ths(Ao, So) and

ths(Ao, S,). Assertions in the ML involving Ao's beliefs can be reasoned about by using

55

- ' ' ' ' , " ' 'i . . .• - I" ' - " " ' ' "* .' "-' * * - * l . . " -. : " ' : " - "

semantic attachment to the appropriate OL theory. For example, line 1 above is attached

to the following statements in the(Ao, So):

Ao's Theory in Situation So

(7) AT(Ao,O)A--LIT(O) 1,B2,semantic attachment

(8) H(So, r'--LIT(OP) 1,B2,H2,semantic attachment

Line 7 is the attachment of line 1 to Ao's theory in So. Line 8 is derived from line I by

the use of H2; it is useful because it will persist as a belief in the successor situation S.

Generally, beliefs that an agent derives about the current situation can be inherited into

succeeding situations by expressing these beliefs with the H predicate.

At this point we do reasoning by cases. First assume the right disjunct of line 6; then

for AO's beliefs in situation S, we have:

Ao's Theory in Situation S1

(9) -LIT(O) [9]:assumed,semantic attachment

(10) -H(S,, r'LIT(OP) [91:gH2semantic attachment

(11) EV(do(Ao, lig(O)), SoS,) 2,semantic attachment
(12) H($o, pPL(P)DH(SI, 7LIT(OP) II,LTI

(13) -H(So, rPl0P) [9]:10,12 contrapositive

(14) H(So, r-PL(OP) [9]:13,TR for H

The first part of the result is derived by line 14, namely, that if Ao observes that the 0 is

not lit in situation So, then he knows that the pilot light was not on in situation So. This

sequence of steps is interesting because it illustrates the intermixture of proof techniques

in the ML and OL. Lines 9, 10, and 11 come from statements in the ML about ths(Ao, SI).

Line 10 is derived from line 9 in the ML by the application of axiom H2. Line 11 says that

58

, -.....,:.-.. .-.-<-.-..-:-....- ..- q...-....,- ..- - .. -......-....

Ao believes that S1 is the result of the light(O) action occurring in So, and follows directly

from line 2 and semantic attachment. Line 12 follows from line 11 and the event axiom

LT1; it is assumed that Ao believes this axiom. Finally, 13 and 14 follow, given that the

truth-recursion axioms for H are made available in all theories in the OL.

The left disjunct of line 6 can be reasoned about in the following way (since lines 11

and 12 did not involve any assumptions, they can be used in this part of the proof also):

Ao's Theory in Situation S

(15) LIT(O) [15]:assumed, sem. att.

(16) H(SI, rLIT(OP) [15:15,H2,sem. att.

(17) -. H(So, rLIT(OP) 8,H3,TR for H,sem. att.

(18) -[H(S, r'LIT(OP)=H(S, rLIT(Op)] [15]:16,17

(19) H(S, r,.PL(Op) D H(S 1 , rLIT(OP)-l)H(S, rLIT(O) Il,LT1

(20) -H(S, r..PL(OP) [151:18,19 contrapositive

(21) H(So, rPL(OP) [15]:20,TR for H

Here again, the first few lines (15, 16 and 17) are established by reasoning at the ML about

ths(Ao, SI). Line 17 comes from an instance of axiom H3, which enables an agent's beliefs

to persist through a sequence of situations. Line 19 comes from Ao's knowledge of LTI,

and line 20 is the key step: it establishes that under the assumption of 0 being lit in S,

the pilot light was on in So. Finally, the frame axiom LT2 will carry the pilot light's status

in So forward into S1 :

57

.- - - - - - - - - - - -

Ao's Theory of Situation S,

(22) Vf SAF(f)Af 7 6 rLIT(O D H(So,f)-H(Sif) 11,LT1

(23) SAF(r'PL(Op) definition of SAF

(24) H(So, rPL(OP)nH(SI, FPL4 Qj) 22,23

(25) PL40) [151:21,24,H2

(26) ---PL(O) [91:14,24,H2

Line 25 is under the assumption of the left disjunct of line 6, and line 26 is under the right

disjunct. In the ML we can derive several results from the preceding proof structure:

In the ML

(27) B(Ao, Si, rPLIO0lP)VB(Ao, Si, r PL(Op) 6,20,21

(28) B(Ao,Si, rLIT(OP) D B(Ao,$, rPL(OP) 15,25
(29) B(Ao, Sl,, -LIT(O) B(Ao, S,, C..PL(OP) 9,26

Line 27 says that in S1 , Ao will either believe that the pilot light is on, or he will believe

that is not on. Thus, by performing the action of lighting the oven, Ao gains knowledge

about the state of an unobservable, the pilot light. This is the desired result of agent Ao

using LT1 to perform a test of an unobservable property.

Lines 28 and 29 give proof-theoretic analogues to the LT axioms, which described

the event of lighting the oven solely in terms of the actual situations before and after the

event. These assertions show how the beliefs of A.o change under the influence of the event

do(a, light(O)). By suitably generalizing the preceding proof, it can be shown that 28 and

29 hold for all agents and initial situations:

vaoaisf EV(do(a, light(o)), se, of!)AK(a,a,, r'AT(a, o)A-LIT(o) D

B(a, 8, rLIT(o) D B(a, a, rPL(0op)
e(a, of 9-..1TJoP) e(a, *!,' P-..4Lop)

(LT3)

',;" 58

LT3 is valid under the condition that LT1 is assumed to be believed by all agents. LT3 is

one description of the way in which an agent's beliefs change in a situation that results from

an oven-lighting event; it would be most useful to a planner as a lemma to be invoked if the

state of the pilot light were to be tested as a step in a plan. Another lemma about oven-

lighting that would be useful to a planner would be one in which the belief preconditions

to an action were made explicit; this would be used to plan actions that light the oven.

3.3.7 Plans and Planning

In the previous subsection we saw how to characterize the changes to an agent's beliefs

produced by his observations of events. In this subsection we will consider how to use these

results as part of the deductions that an agent needs to do to construct workable plans,

i.e., plans that will accomplish their goals.

Consider how an agent might go about constructing workable plans. Using his descrip-

tion of various events (PO, LT, and others) he can try to find a sequence of actions that

lead to the desired goals being true in some final situation. If we identify the planning

agent with the ML, then a plan would be a sequence of situations connected by actions

performed by that agent, such that the goals are true in the final situation. This doesn't

seem to involve the planning agent in any reasoning about his beliefs; all he needs to do is

describe how the actual world changes under the influence of his actions.

This isn't the whole story, though. The plan that is derived must be an executable

plan; that is, if the plan is a sequence of actions, the agent must be able to execute each of

those actions at the requisite time. For instance, the action description light(oven(John))

will not be executable if Ao doesn't know which oven is John's. For a plan to be executable

by an agent, the agent must know what action is referred to by each of the do-terms in the

plan. According to a previous section, this means that the agent must have the standard

name for the action in his theory. But what are standard names for actions! Following

Moore [Moo80, we take the viewpoint that actions can be analyzed as a general procedure

59

... -.

applied to particular arguments, e.g., puton is a general procedure for putting one block

on top of another, and puton(A, B) is that procedure applied to the two blocks A and B.

If we assume that all agents know what general procedure each action denotes, then the

standard names for actions are simply the terms formed by the action function applied to

the standard names of its parameters 1 5 The condition that actions be executable forces

the planning agent to make the critical distinction between his beliefs at planning time and

his beliefs at execution time. A planning agent may not know, as he forms his plan, exactly

what action a particular do-term in his plan denotes; but if he can show that at the time

he is to execute that action, he will know what it is, then the plan is an executable one.

Plans of this type occur frequently in common-sense reasoning; consider a typical plan A.o

might form to tell someone what time it is. The plan has two steps: first Ao will look at

his watch to find out what the time is, and then he will communicate this information to

the requester. At planning time, Ao doesn't really know what the second action is, because

he doesn't know the time, and the time is an important parameter of the communication

act. Yet he can reason that after looking at his watch, he will know the time; and so the

plan is a valid one.

By this argument, an agent must analyze at planning time what the future states of

his beliefs will be as he executes the plan. Thus the planning process intrinsically forces

the agent into introspection about his future beliefs. Since we have identified the planning

agent with the ML, it is natural to represent his future beliefs during the execution of

the plan as OL theories in the situations that the planning process gives rise to. If the

planning agent is Ao, then these theories are ths(Ao, So) (the initial situation), the(Ao, S1),

etc., where each of the S, results from its predecessor via the execution of the next action

16 Actually, the condition that the parameters be standard names is too strong. Standard names have the property

that every agent knows whether two individuals named by standard names are the same or not in every situation, but
this condition is not strictly necessary for an action to be executable. Consider the action of requesting information
from the telephone operator; surely it is not required that an agent be able to differentiate the operator from every
other individual in his beliefs. If he were to dial the operator on two separate occasions, he would not necessarily be
able to tell if he talked to the same operator or not.

80

in the plan. Ao's planning process is basically a simulation of the plan's execution in which

he reasons about the changes that both the actual world and his set of beliefs will undergo

during the course of the plan's execution. By figuring out what his future states of belief

will be, he can decide at planning time whether an action of the plan will be executable.

For Ao to take other agents' plans into account in forming his own, he must be able to

represent their future states of belief, in addition to his own. But this doesn't involve any

additional representational complexity, since Ao is already keeping track of his own beliefs

during the simulated execution of the plan. In [Kon8O an example of a multiagent plan is

presented; currently we are working on formalizing such plans in the framework presented

here.

Actually, this planning process bears a strong resemblance to typical implementa-

tions of a situation calculus approach to planning [War74]. In these systems, events are

axiomatized along the lines of PO and LT, and the planner searches for a sequence of

situations that leads to the goal by doing theorem-proving with the event axioms; the

search space is essentially the same in either approach. The main difference is in the rela-

tive complexity of reasoning that the two planning systems must be able to handle. In the

approach described here, the effect of actions on the agent's beliefs in each situation greatly

increases the deductive complexity of the planner and the work that it must do at each

node in the search space of plans. The usefulness of lemmas such as LT3 that describe

the effects of actions on an agent's belief state now becomes apparent: by summarizing the

effect of actions on an agent's beliefs, they reduce the complexity of the deductions that

must be performed at each step in the plan. Further savings can be realized by using the

method of belief attachment described in the previous section: from H(S, f) at the ML,

infer K(Ao, s, f). Most of the work of figuring out Ao's future states of knowledge can be

performed by reasoning about H at the metalevel, rather than K, and this is considerably

simpler. Finally, it should be noted that the executability requirement acts as a filter on

plans. Thus a reasonable search strategy would be to first find a plan that works without

81

taking into account its executability (and hence the future belief states of the planning

agent), and then test it for executability.

3.3.8 Conclusion

To summarize the contributions of this paper: we have defined a syntactic approach

to the representation of knowledge and belief in which the key element is the identification

of beliefs with provable expressions in a theory of the object language. The technique

of semantic attachment to the intended interpretation of the metalanguage provability

predicate has been advanced as a method of simplifying proofs by directly modeling an

agent's inference procedure, rather than simulating it.

To unify a formalization of knowledge and action, we have shown how to take Moore's

account of their interaction and formalize it within the syntactic framework. The benchmark

example was a presentation of a test in which an agent uses his knowledge of observable

properties of the world and the way actions affect the world to discover the state of an

unobservable property. Finally, we pointed out how the formalization could be used in a

planning system.

While this paper is a step towards showing that the syntactic approach can be extended

to an adequate formalization of the interaction of knowledge and action, there is still much

work to be done in constructing a practical planner for a multiagent environment that

uses this formalism. Two areas in particular are critical. First, a suitable system for

doing automatic deduction in the framework has to be worked out. Although we have

advocated semantic attachment as a means of simplifying proofs, we have not yet explored
the problem of controlling a deduction mechanism that uses this technique. The second

area also involves control issues: how can a planner be designed to search the space of

multiagent possible plans efficiently? One of the ideas suggested by this paper is to derive

lemmas of the form of LT3 that show the effect of actions on an agent's beliefs. With

such lemmas, a planning system would have already compiled the necessary results for

62

J.

constructing new belief states from previous ones.

3.4. Acknowledgments

This research is a direct outgrowth of research conducted with Nils Nilsson (Kon8Ol,

and still reflects his influence. Stan Rosenschein and Nils Nilsson read previous drafts of

this paper, and their criticisms and comments have contributed to the final form. Also,

I have benefited from talks with Pat Hayes, Bob Moore, Richard Weyhrauch, Carolyn

Talcott, and all the members of the planning group at the Artificial Intelligence Center

at SRI. This research is supported by the Office of Naval Research under Contract No.

N00014-80-C-0296.

83

- -m. ."..

Appendix A: The Wise Man Puzzle

This is a solution to a simple version of the wise man puzzle, for whose statement we

quote from [McC80]: A king wishing to know which of his three wise men is the wisest,

paints white dots on each of their foreheads, tells them that at least one spot is white, and

asks each to determine the color of his spot. After a while the smartest announces that

his spot is white reasoning as follows: "Suppose my spot were black. The second wisest of

us would then see a black and a white and would reason that if his spot were black, the

dumbest would see two black spots and would conclude that his spot is white on the basis

of the king's assurance. He would have announced it by now, so my spot must be white."

We will simplify this puzzle by having the king ask each wise man in turn what color

his spot is, starting with the dumbest. The first two say "no," and the last says that his

spot is white. Note that in this formalization we will not prove that the first two wise men

don't know the color of their spots, but will take it as given; the deduction of such forms

of non-knowledge is a hard problem that is not addressed here.

In formalizing the puzzle, we will take the three wise men to be Ao, A,, and A2 , in

order of increasing stupidity. We will reason about the puzzle from Ao's point of view, and

show that A0 knows that his spot is white after hearing the replies of the other two. We

will not be concerned with the axiomatization of the speech act performed by the agents;

it will be assumed that Ao's model of the world changes appropriately to reflect this new

information.

There are three situations in the puzzle: the initial situation So, the situation S just

after A 2 speaks, and the situation S2 just after A, speaks. The frame axioms for these

situations are simply that every agent knows what he knew in the previous situation; these

frame axioms are common knowledge.

We will identify Ao with the ML, so the goal is to show:

64

H(S2, W(Ao))

in the ML. W(a) is the predicate whose meaning is "a's spot is white." The initial conditions

of the problem are:

(1) W(AI)AW(A 2)

(2) CFACT(W(Ao)VW(Aj)VW(A2)

(3) CFACT(rK(A2 , So, rW(Ao)VK(A2 , SO, --W(AoM)

(4) CFACT(FK(ASo, rSW(A P)VK(A2 , So, r --W(Aj P)

(5) K(A 1 ,So, rW(AP)VK(AI,So, r-W(Aop)

(6) CFACT(r K(A 2 ,So, rW(A 2 PP)

(7) CFACT(r.K(AI,SI, rW(AI)

Line 1 says that A0 observes white spots on A, and A2 ; line 2 asserts that it is common

knowledge that at least one spot is white. The next two lines state that it is common

knowledge that A 2 can observe whether the other two agent's spots are white or not. Line

5 says that A, knows the color of Ao's spot. And the last two lines express the effect of the

first two agent's answers to the king on everyone's knowledge. This axiomatization will be

sufficient to prove that Ao knows his spot is white in S2.

The first step in the proof is to show that A, knows, in situation SI, that either his

own or Ao's spot is white; this by reasoning about A2's answer to the king. We will attach

to Al's theory in situation S, (that is, ths(Al, SI)), and do our reasoning there:

Al's Theory in Situation S1

(8) -K(A 2 , So, rW(A2K') 6,semantic attachment

(9) K(A 2 , So, rW(A)VW(Aj)VW(A 2) 3,semantic attachment

(10) K(A2 ,So, r(-W(Ao)A-.W(AI))DW(A 2 P) 9

(11) K(A 2 ,So,r. W(Ao)A-.W(Al)DK(A 2 ,So,rW(A2P) 10,MP

(12) -K(A 2, SO, r-W(Ao)A-W(AI K) 8,11 contrapositive

85

S" .' - -" - - - " -" - - ,- -" " ' - "- - - - ' , -i " i - - .. , .. - .- -

In these lines, we have used the fact that everyone knows that everyone knows common

knowledge assertions. At line 12, A, realizes that A2 doesn't know that both AO and A,

lack white dots; if he did, he would have announced the fact.

Now A, uses the common knowledge that A2 can observe the color of Ao's and Al's

dots to reason that one of the latter has a white dot:

Al's Theory in Situation S,

(13) K(A 2 , So, '-W(Aol)AK(A2, So, r-W(A P) [131:asumption
(14) K(A2, So, -W(AO)A-W(Al P) [131:13,PR

(15) -K(A 2 ,So, r'.W(.oP) V .- K(A2 , So, r...W(Ai P) 13; 12,14 contradiction

(16) -. K(A2 , So, r".W(Ao P) [16]:assumption

(17) K(A2 , So, r-W(oP)VK(A2, So, r"W(Ao) 3,semantic attachment

(18) K(A2, So, r-w(AoP) [6:61

(19) -K(A, So, r-W(Al P) [9:assumption

(20) K(A2 , S., rW(Al P)VK(A2, So, r-"W(A1 P) 4,semantic attachment

" (21) K(A2 ,So, r-W(Ai) (191:19,20

(22) K(A2, So, rW(AoP)VK(A2,So, rW(A P) 15,16,18,19,21

(23) H(So, rW(Ao)VW(A1P) 22,B2

(24) W(Ao)VW(Al) 23,frame axiomsR1

We first show here that A2 doesn't know Ao's spot is black, or he doesn't know that Al's

spot is black (line 15). Assertions that follow from assumptions are indicated by a square

bracketing of the assumption line number in their justification. Next we do an analysis

by cases of line 15; in either case, line 22 holds: A 2 either knows Ao's spot is white, or he

knows Al's spot is white. From this A, concludes that either he or Ao has a white spot

(line 24). Note that the frame axioms were needed to show that the W predicate doesn't

change from situation So to situation S1.

:::~~~~~~........'-' - . ."..............-- -..-...... "............. -'.:. . ., ,

At this point we are through analyzing Al's theory of situation S1, and go back to the

ML to reason about situation S2 . By line 5, Al knows the color of Ao's dot, so we assume

that he knows it is black:

At the Metalevel

(25) K(AI, So, r. W(AoP) [25]:asumption

(26) K(Aj, S1, r."W(o) [25]:25,frame axioms

(27) K(Aj,Si, r-W(A0)D W(A 1P) 24,frame axioms

(28) K(Ai,Si, rW(Atp) (25:26,27,MP

(29) -.-K(Ai, SI, r'W(Al) 7, common knowledge

(30) -. K(A1 , SO, r-"W(Aop) 25, 28,29,contradiction

(31) K(AI,So, rW(Ao) 5,30

(32) H(So, rW(Ao) 31,B2

Under the assumption that A, knows Ao's spot is black, we derive the contradiction of

lines 28 and 29. Therefore, by line 5, it must be the case that A, knows A0's spot to be

white. This is the conclusion of line 32; since this is one of Ao's beliefs, we are done.

.

67

44

4. Planning Natural-Language Utterances

This section was written by Douglae Appelt. This research was supported in part by the

Office of Naval Reaearch under contract N0014-80-C-0296 and in part by the National Science

Foundation under grant MCS-8115105.

4.1. Introduction

This paper describes recent research on a natural-language generation system that

is based on planning. The view of language production adopted here is similar to that of

Allen [A1180], Cohen and Perrault [Coh79I, namely that speakers produce utterances with the

intention of satisfying particular goals, and that a hearer's understanding of an utterance

depends on how he interprets the utterance as fitting in with what he believes to be the speaker's

plan.

A system named KAMP (for Knowledge And Modalities Planner) has been developed

that plans natural-language utterances, starting with a high-level description of the speaker's

goals. The system can be viewed as an extension of speech-act planning research by Cohen

[Coh79], but while Cohen stopped at producing abstract descriptions of speech-acts, KAMP

extends the planning down to the level of the production of English sentences, integrating both

physical and linguistic actions that satisfy discourse, knowledge-state and referring goals into

utterances that achieve multiple goals simultaneously.

This research has addressed the following three major problems:

Developing a domain-independent multiple-agent planning system

called KAMP.

Extending the possible-worlds semantics representation of proposi-
tional attitudes developed by Moore [Moo80] to handle mutual knowledge
and wanting.

!

Figure 1

Satisfying Multiple Goals with a Request

Capturing linguistic knowledge in the axioms, critics, and procedures
used by KAMP to facilitate the planning of linguistic actions.

4.2. Why Plan Utterances?

Figure 1 illustrates a typical situation arising when two people cooperate on a common

task in which a speaker plans an utterance that has multiple effects on the intended hearer.

The speaker points to one of the tools on the table and says "Use the wheelpuller to remove

the flywheel." The hearer, who is observing the speaker while he makes the request, and

knows that the speaker is pointing to the particular tool, thinks to himself, "Ah, so that's a

wheelpuller. I was wondering how I was going to get the flywheel off."

04 69

7.* -

The speaker's utterance in figure I is syntactically very simple, but a surprising amount

of sophisticated reasoning is required for a speaker to produce such an utterance and know

that it will have the intended effect on the hearer. Most obviously, the speaker wants to make

a request of the hearer to do something. However, before he can make the request, he has to

determine whether the hearer has enough knowledge to carry it out. If not, then the speaker

has to know that the hearer can form a plan for acquiring the knowledge, or he must furnish

the knowledge himself. In this example, the speaker informs the hearer that he should use the

wheelpuller as part of the same utterance that he uses to request that he perform a removing

action.

The speaker uses the noun phrase "the wheelpuller" to refer to a particular tool. In

figure 1, it is evident from the hearer's reaction that he didn't know what a wheelpuller is, and

the speaker knew that, because he performed a pointing action to make his intention to refer

clear. Although the speaker knew that the hearer did not know what a wheelpuller was, he

knew that the hearer would know after understanding the sentence. The utterance of figure 1

also serves to inform the hearer that the object the speaker is pointing to is a wheelpuller. In

order for the speaker to make that inference, he had to know that the hearer would know that

he didn't intend the object he was pointing at to be the referent of "the flywheel." He knows

that because he knows the hearer knows that the flywheel is not a tool, and therefore cannot

fill the instrument role of "remove." Under different circumstances, the speaker could point to

the flywheel, utter the identical sentence as in figure 1, and reason that the utterance would

inform the hearer that the object he was pointing to was the flywheel.

4.3. The KAMP Language Planning System

It is clear from the above example that a model of language production that is simply

a transducer from a logical form to a surface utterance is not sufficient to account for the way

that people use utterances to satisfy multiple goals - an ability that requires the speaker and

hearer to make inferences about each other's plans. Furthermore, utterances do more than alter

70

Figure 2

The Organization of a Language Planning System

the participants' knowledge and wants. They influence the participants' emotional attitudes,

and affect the state of the ongoing discourse. Utterances can be planned with intentions of

acheiving goals along these dimensions as well. Therefore, instead of a simple transducer from

logical form, KAMP is organized like the planner in figure 2.

The overall organization of KAMP as a hierarchical planner similar in overall organiza-

tion to Sacerdoti's NOAH [Sac77 was discussed in detail in Appelt [App80] [App82]. KAMP has

two descriptions of actions at each level in the action hierarchy: A full axiomitization in terms

of possible worlds, and a shorter, more intuitive description called an action eummary. KAMP

uses the action summaries as a heuristic device to propose plans that it then verifies using the

71

Figure 3

A Hierarchy of Actions Related to Language

possible worlds axiomatization. The heuristic plan generation process is implemented by the

NOAH-like hierarchical planner, while the verification process is implemented by a first-order-

logic theorem-prover.

Figure 3 illustrates the hierarchy of actions that is used by KAMP to plan linguistic ac-

tions. The central problem of building a language-planning system around KAMP is formulating

the correct axioms, and incorporating the correct action summaries and critic procedures into

-.1

KAMP that describe the actions of the hierarchy in Figure 3.

72J

.- .

;.- * .*

7 V-;-.-> -- 7

4.4. Axiomatizing Knowledge about Intensional Concepts

Axiomatizing the actions of Figure 3 requires the ability to specify how performing

actions affects the knowledge, mutual knowledge and wants of agents. Moore's possible-worlds-

semantics approach [Moo80] solves this problem with respect to knowledge and its relation to

action. It is impossible to describe Moore's approach in detail here, but the central idea is

to axiomatize the possible-worlds semantics of a modal object language in a first-order meta-

language. Thus, the semantics of a statement like Know(A, P) is represented as "P is true in

every possible world consistent with what A knows."

It is necessary to reason about mutual knowledge (i.e., knowledge that A knows that

B knows that A knows ... ad infinitum) to plan referring expressions (see Clark &Marshall,

[ClaSi]). KAMP reasons about the mutual knowledge shared by two agents by reasoning about

what is true in the union of the sets of possible worlds consistent with two agents' knowledge.

An "agent" called the kernel of A and B is defined, for whom the worlds consistent with

his knowledge are precisely that union. This is a generalization of the "any fool" approach

adv .ated by McCarthy and Sato [McC78].

Wanting is represented in KAMP by a relation between an agent and a set of possible

worlds called a .ituetion. The situation is a set of possible alternatives to the current world

which an agent is said to want. The situation that an agent wants can be characterized by

different propositions according to what he knows. An agent is said to want P if there is some

situation he wants such that P is true in every possible world that is a member of the situation,

with the terms of P evaluated with respect to the agent's knowledge. This representation allows

one to make a connection between knowledge and wanting, which while ignoring many of the

subtle problems associated with wanting and intention, is adequate for solving many planning

problems that arise in the task-oriented domains under considertation. It allows one to reason,

for example, that if John wants to meet the president of the United States, and if John knows

that the president of the United States is Ronald Reagan, then John wants to meet Ronald

73

.*.

.- :.7

Reagan.

4.5. Axiomatizing Linguistic Actions

As illustrated in figure 3, the most abstract linguistic actions in KAMP's hierarchy

are illocutionary acts. These are actions such as informing, requesting, promising, thanking,

etc., that can be characterized as communicative acts independent of any particular linguistic

realization.

Speakers do not perform illocutionary acts directly, but rather perform them by mean'

of the performance of eurface speech acts. When a speaker plans a surface speech-act, he selects

the propositional content of the sentence he is going to utter (which may be different from the

propositional content of the illocutionary act in the case of indirect speech acts), and selects

a particular syntactic structure that is to be used for the realization of the illocutionary act.

A fundamental choice made at this level is whether to use an imperative, interrogative or

delcarative sentence. Each surface speech-act has a syntactic structure tree associated with it

that evolves as the plan is expanded to include more constituents expanded to progressively

lower levels.

%d The relationship between illocutionary acts and surface speech-acts is similar to the

relationship between walking across the room and a sequence of muscle movements. One action

is performed by means of performing the others. What distinguishes this relationship from

walking and muscle movements is that the particular illocutionary act that is being performed

depends on the hearer's recognition of what the speaker is trying to do. A particular surface

speech-act, for example, "Can you reach the tool on the top shelf?" can in one case be a request

to retrieve a tool, and in another case a request to inform the speaker of the ability to retrieve

a tool.

As the example illustrates, it is not even the case that there is a one-to-one correspon-

dence between illocutionary acts and surface speech acts. In this case several informing and

requesting actions are being performed as part of a single surface speech-act.

74

*1t

KAMP has an axiomatization of each illocuationary act and surface speech-act it knows

about in terms of the possible worlds approach outlined above. This paper will not describe

the axioms in detail, so the interested reader is refered to IApp8O for more information. The

general approach to axiomatizing illocutionary acts is to describe only what Austin [ref] refers to

as illocutionary effects, and not perlocutionary effects. In other words, the effect of informing a

hearer that P is not that the hearer then believes P, but that the hearer knows that the speaker

wants him to know that the speaker believes P. However, the speaker wanting the hearer to

know that the speaker believes P is a reasonable precondition of the sincere performance of

an informing action. Therefore, the effects of an illocutionary act can be stated as producing

the mutual knowledge between the speaker and the hearer that the act has been performed.

All deductions about the change in the knowledge of the participants follow from knowing

the action has been performed, and their mutual knowledge of the conditions on the action's

performance.

Surface speech-acts include concept activation actions as part of their realization on

the next lower level of abstraction. Concept activation actions describe referring at a high

enough level of abstraction so that they are not constrained to be purely linguistic actions.

When a concept activation action is expanded to a lower level of abstraction, it can result in

the planning of a noun phrase within the surface speech act of which the concept activation is

a part, and physical actions such as pointing that also communicate the speaker's intention to

refer, and may be realized by a plan that includes either physical or linguistic actions.

Although concept activation actions can be realized through physical actions, the plan-

ner must reason about their interaction with the linguistic actions being planned. Therefore,

concept activation actions are expanded with an intention-communication component that

communicates the speaker's intention to refer, and a linguisic-realization component that is

part of the surface speech-act and takes into account the grammatical rules.

The lowest level actions of Figure 3 are the utterance acts. Utterance acts consist of the

utterance of particular sequences of words. The component of KAMP that produces utterance

75

-A.!

i,~~67 -- - -. c , - - -, , , . . • . . - o, . . .

acts from a plan of hierarchical linguistic actions and the constituent-structure trees associated

with surface speech acts is quite simple because at this point, no modifications to the plan

are made because decisions are completely determined by grammatical rules, and there is no

room for the speaker's intentions to influence the process. The final stage of planning consists

primarily of making obligatory modifications required by the grammar, such as subject-verb

agreement, proper auxilliary affixes, insertion of reflexive pronouns, etc.

4.6. Conclusion

The development of KAMP has been the first step toward a theory of planning natural

language utterances that allows the satisfaction of multiple goals in a single surface utterance,

that plans utterances tailored to the specific knowledge of an intended hearer as well as the

context of the discourse, and that provides for the integration of physical and linguistic actions.

There are a number of areas in which the concepts developed in KAMP can be profitably

applied and extended. One major area is the planning of extended discourse. Currently,

KAWP plans only very simple dialogues. It may plan more than one utterance if it wants to

perform several illocutionary acts, and it cannot figure out a way in which one can subsume the

others. The resulting dialogues will be coherent because the illocutionary acts are naturally tied

together by being part of the same plan. However, to move beyond simple dialogues consisting

- of alternating one or two sentence turns, more complex, abstract discourse-level actions must

be defined. McKeown [McK80] incorporates such strategies in a language generation system,

and such actions need to be formalized in a planning framework to be used by a system like

KAMP.

KAMP currently keeps track of discourse focus primarily so it can generate appropriate

referring expressions. When planning an extended discourse, the planner would also be con-

cerned about the speeaker's need to inform the hearer of topic shifts. Topic shifting actions,

similar to those described by Reichman (Rei78J, must be formalized and planned when ap-

propriate.

76

The primary focus of research on KAMP has been on planning natural-language ut-

terances. However, KAMP is a general tool that can serve as the basis of multiple-agent plan-

ning systems in a variety of domains. There are many problems concerning planning to acquire

knowledge, cooperation among several agents with limited resources, etc., for which KAMP

-: seems useful.

77

'..-.

U . . .

"

References

[A11801 Allen, J. and C. R. Perrault, Analyzing Intention in Utterances, Artificial
Intelligence, 15:3 (December 1980).

[App80] Appelt, D. E., A Planner for Reasoning about Knowledge and Action, Proceed-
ings of the First Annual National Conference on Artificial Intelligence,
Stanford, California (August 1980).

[App82] Appelt, D. E., Planning Natural Language Utteranes to Satisfy Multiple Goal,

Technical Note 259, Artificial Intelligence Center, SRI International, Menlo Park,
California (1982).

[Aus62] Austin, J., How to do things with Words, Oxford, England: Oxford University
Press, 1962.

[Chu51] Church, A., A Formulation of the Logic of Sense and Denotation, in Structure,
Method and Meaning, P. Henle et. al., eds., New York, New York: Liberal
Arts Press, 1951.

[Cla8l] Clark, H., and C. Marshall, Definite Reference and Mutual Knowledge, in Ele-
ments of Discourse Understanding A. Joshi et. al., eds., Cambridge, England:
Cambridge University Press, 1981.

[Coh79] Cohen, P. and C. R. Perrault, Elements of a Plan Based Theory of Speech Act.,
Cognitive Science, 3:3, pp. 177-212 (1979).

[Cre79] Creary, L. G., Propositional Attitude.: Fregean Representation and Simulative
Reasoning, Proceedings of the 6th International Joint Conference on
Artificial Intelligence, Tokyo, Japan, pp. 176-181 (1979).

[Dij75] Dijkstra, E. W., Guarded Commands, NondeterminacY and Formal Derivation of
Programs, Communications of the ACM, 18:8, pp. 43-457 (August 1975).

[Doy78J Doyle, J., Truth Maintenance Systems for Problem Solving, Memo AI-TR-
419, Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, Massachusetts (1978).

[Fik7l] Fikes, R. E. and N. J. Nilsson, STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving, Artificial Intelligence, 2:3-4, pp. 189-208
(Winter 1971).

[Fol80 Follett, R., Automatic Program Synthesis, Ph.D. dissertation, University of New
South Wales, Australia (May 1980).

[Har7] Hare, D., First Order Dynamic Logic, Lecture Notes in Computer Science,
68, New York, New York: Springer-Verlag, 1979.

[Hay79J Hayes-Roth, B. and F. Hayes-Roth, S. Rosenschein, and S. Cammarata.
Modeling Planning as an Incremental, Opportunistic Process, Proceedings of
6th International Joint Conference on Artificial Intelligence, Stanford
University, Stanford, California, pp. 375-383 (August 1979).

[Hoa891 Hoare, C.A.R., An Aziomatic Basis for Computer Programming,
Communications of the ACM, 12:10, pp. 576-583 (October 1969).

[Kap71] Kaplan, D., Quantifying In, in Reference and Modality, L. Linsky ed., pp.
112-144, London, England: Oxford University Press, 1971.

[Kle67J Kleene, S. C., Mathematical Logic, New York, New York: John Wiley and
Sons, 1967.

[KongO] Konolige, K. and N. Nilsson, Multiple Agent Planning Systems, Proceedings of
the First Annual National Conference on Artificial Intelligence, Stanford,
California, (August 1980).

[Kon8l] Konolige, K., in preparation (1981).

[Kow79] Kowalski, R., Logic for Problem Solving, New York, New York: North-Holland
Publishing Company, 1979.

[Lit77] Litvintchouk, S. D. and V. R. Pratt, A Proof-Checker for Dynamic Logic,
Proceedings of 5th International Joint Conference on Artificial
Intelligence, Massachusetts Institute of Technology, Cambridge, Massachusetts,
pp. 552-558 (August 1977).

[Man77] Manna, Z. and R. Waldinger, Studies in Automatic Programming Logic,
New York, New York: North-Holland Publishing Company, 1977.

[McC62] McCarthy, J., Toward, a Mathematical Science of Computation Information
Processing, Proceedings of the IFIPS Congress, 62, pp. 21-28, New York,
New York: North-Holland Publishing Company, 1962.

[McC69] McCarthy, J. and Hayes, P. J., Some philosophical Problems from the Standpoint
of Artificial Intelligence in Machine Intelligence 4, B. Meltzer and D. Michie
eds., pp. 463-502, Edinburgh, Scotland: Edinburgh University Press, 1969.

[McC78] McCarthy, J., M. Sato, T. Hayashi, and S. Igarashi, On the Model Theory
of Knowledge, Memo AIM-312, Artificial Intelligence Laboratory, Stanford
University, Stanford, California (1978).

[McC79] McCarthy, J., Firat Order Theories of Individual Concept. and Propositions, in
Machine Intelligence 9, J. E. Hayes and D. Michie eds., pp. 120-147, New
York, New York: Halsted Press, 1979.

[McK80] McKeown, K. R., Generating Relevant Eiplanation.: Natural Language Reapon-
.- ace to Questions about Database Structure, Proceedings of the First Annual

National Conference on Artificial Intelligence, Stanford, California (August
1980).

79

[Moo80] Moore, R. C., Reasoning About Knowledge and Action, Technical Note 191,
Artificial Intelligence Center, SRI International, Menlo Park, California (1980).

[Nil80] Nilsson, N., Principles of Artificial Intelligence, Palo Alto, California: Tioga
Publishing Company, 1980.

[Pra76] Pratt, V. R., Semantical Considerations on Floyd-Hoare Logic, Proceedings of
the 17th IEEE Symposium on Foundations of Computer Science, pp.
109-121 (October 1978).

[Pra78a] Pratt, V. R., A Near-Optimal Method for Reasoning about Action, Technical Note
MIT/LCS/TM-113, Laboratury for Computer Science, Massachusetts Institute of
Technology, Cambridge, Massachusetts (September 1978).

[Pra78b] Pratt, V. R., Siz Lectures on Dynamic Logic, Technical Note MIT/LCS/TM-

117, Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts (December 1978).

[Qui7l] Quine, W.v.O., Quantifiers and Propositional Attitudes, in Reference and
Modality, L. Linsky ed., pp. 101-111, London: Oxford University Press, 1971.

[Rei78] Reichman, R., Conversational Coherency, Cognitive Science, 2:4 (1978).

[Ros8l] Rosenschein, S. J., Hierarchical Planning: Implementation Consideration,
forthcoming.

[Sac75] Sacerdoti, E. D., The Nonlinear Nature of Plans, Proceedings of 4th International
Joint Conference on Artificial Intelligence, Tbilisi, Georgia, USSR, pp. 206-214
(September 1975).

[Sac771 Sacerdoti, E. D., A Structure for Plans and Behavior, Amsterdam, Holland:
Elsevier North-Holland, Inc., 1977.

[Sus75J Sussman, G. J., A Computer Model of Skill Acquisition, New York, New
York: American Elsevier, 1975.

[Tat77J Tate, A., Generating Project Network., Proceedings of 5th International
Joint Conference on Artificial Intelligence, Massachusetts Institute of
Technology, Cambridge, Massachusetts, pp. 888-893, (August 1977).

[Tat77] Tate, A., Project Planning Using a Hierarchic Non-Linear Planner, D.A.I.
Research Report No. 25 University of Edinburgh, Edinburgh, Scotland (1977).

[Wa751 Waldinger, R., Achieving Several Goal Simultaneously, Technical Note 107,

Artificial Intelligence Center, SRI International, Menlo Park, California (July
1975).

[War741 Warren, D.H.D., WARPLAN: A System for Generating Plan., Memo 76,
Department of Computational Logic, University of Edinburgh, Edinburgh,
Scotland (July 1974).

2, 80

[War761 Warren, D.H.D., Generating Conditional Plans and Programs, Proceedings
of Summer Conference on Artificial Intelligence and Simulation of Behavior,
University of Edinburgh, Edinburgh, Scotland, pp. 344-354 (July 1976).

[Wey80] Weyhrauch, R., Prolegomena to a Theory of Mechani:ed Formal Reasoning,
Artificial Intelligence 13 (1980).

.

81

* 4.

Ikk

-.4K Z. -

At
f

00 41,

* 37

4k,

4P. &4! r.

